
User’s Guide for SDDS-compliant EPICS Toolkit Version 1.5

L. Emery, M. Borland, H. Shang, R. Soliday

Advanced Photon Source

March 9, 2005

The SDDS-compliant EPICS toolkit is a set of software applications for the collection or writing
of data in Experimental Physics and Industrial Control System (EPICS) database records. Though
most of the applications essentially do rather simple operations, the combination of these and others
from the SDDS postprocessing toolkit allow arbitrarily complicated analysis of data and control of
the accelerators at the Advanced Photon Source. These tools are general and can be applied to
devices other than accelerators under control of EPICS.

The EPICS tools presented here read and store data to SDDS-protocol files. SDDS (Self-
Describing Data Set)[1] refers to a particular implementation of a self-describing file protocol used
at APS. Self-describing means that the data is refered to and accessed by name. Thus, a user
doesn’t need to know, say, in which column a piece of tabular data is located. An ASCII header
contains information about the file’s data structure, i.e. definitions of structure elements such as
columns (tabular data) and parameters (single values).

Initially adopted for complex physics simulation programs, it was clear that the SDDS file
protocol would excel in data-collecting software as well. Typically, an EPICS tool would write
EPICS data to an SDDS file with each readback written to a column of name corresponding to the
EPICS database record name. Single value data that describe the experimental conditions might
be written to the file as parameters. Once collected, the EPICS data can be further analyzed and
plotted with any of the SDDS tools described in [1]. One can regard the EPICS tools as the layer
between the EPICS control system and more functional analyzing tools and scripts, with SDDS
protocol files as an intermediary.

Following conventional usage, EPICS database records will be refered to as “process variables”
or PVs in this manual.

1 Manual Pages Overview

1.1 EPICS Toolkit Programs by Category

1.1.1 Configuration Save and Restore

• burtrb (2.1) — Reads values of process variables and writes them to a snapshot file. Example
application: saving the configuration of an accelerator for later use.

• burtwb (2.2) — Reads values from a snapshot file and writes them to process variables.
Example application: restore an earlier configuration of an accelerator.

• sddscasr (2.7) — a new configuration save and restore program with many unique features.

1

• sddscaramp (2.6) — Performs ramping of process variables between the present state and the
states in one or more SDDS files.

• toggle (2.4) — Alternates between two sets of process variable values stored in snapshot
files at a regular interval. Example application: Alternate between two configurations of an
accelerator for debugging accelerator performance.

1.1.2 Data Collecting

• sddssnapshot (2.17) — Reads values of process variables and writes them to a snapshot file.
Example application: Taking succesive sets of data.

• sddsmonitor (2.14) — Reads values of process variables and writes them to a file at regular
intervals. Example application: archiving of system performance, investigation of glitches.

• sddsglitchlogger (2.11) — Reads values of process variables and writes them to a file or
multifile at regular intervals when certain trigger occurs. Example application: archiving
of system performance, inverstigation of transition-based, glitch-based and alarmed-based
triggers.

• sddsvmonitor (2.20) — Reads values of process variables and writes them to a file at regular
intervals. The list of readback process variables is constructed by multiplying a rootname
list and a suffix list. Example application: archiving of system performance, investigation of
glitches.

• sddswmonitor (2.21) — Reads values of waveform and scalar process variables and writes
them to a file at regular intervals. Example application: archiving of system performance,
investigation of glitches.

• sddsstatmon (2.18) — Reads values of process variables, calculates statistics and writes them
to a file at regular intervals. Example application: archiving of system performance.

• sddsexperiment (2.9) — Varies process variables and measures process variables, with op-
tional statistical analysis. Example application: investigation of unforeseen physical depen-
dences, measure corrector-bpm response matrices.

• sddsvexperiment (2.19) — Varies process variables and measures process variables, with op-
tional statistical analysis. The list of readback process variables is constructed by multiplying
a rootname list and a suffix list. Example application: investigation of unforeseen physical
dependences, measure corrector-bpm response matrices.

• sddsalarmlog (2.5) — Collects alarm status of a list of process variables. Example applica-
tions: Logging alarms for a particular accelerator system over a period of many runs in order
to compile a history of faults statistics.

• sddslogger (2.12) — Reads values of process variables and writes them to a file at regular
intervals. Similar to sddsmonitor but it generates less network traffic.

• sddslogonchange (2.13) — Records only the values of process variables that change. This
reduces the output file size if process variables do not change often.

2

1.1.3 Control

• sddscontrollaw (2.8) — Reads a matrix for a control law-type equation and regulates the
values of a list of readback process variables by applying corrections to another list of process
variables. Example application: removing slow drifts in accelerators (such as the energy of a
linac beam), trajectory and orbit correction.

• knobconfig (2.3) — Assigns knobs to devices according to the input file. Example applica-
tion: Manually tweak a trajectory, storage ring tunes and chromaticity.

• squishPVs (2.22) — Minimizes the absolute values of a set of readback process variables by
varying setpoint process variables which have a physical influence on the readback process
variables. Example application: Reducing the size of the trajectory in a beamline without
knowledge of the response matrix between bpms and correctors.

• sddsoptimize (2.15) —Minimizes or maximizes the RMS of a set of readback process variables
by automatically varying setpoint process variables (or knobs composed of setpoint PVs),
which have a physical influence on the readback process variables, through simplex or 1dscan
method.

• sddspvtest (2.16) —tests the process variable given by the inputfile are out-of-range or not
and sets the number of out-of-range process variables to a control PV.

1.2 Toolkit Program Usage Conventions

(This text in this section is borrowed from [1].)
In order to make the multitude of Toolkit programs easier to use, the developers have attempted

to use consistent commandline argument styles. The Toolkit programs all require at least one com-
mandline argument. Therefore, if a program is executed without commandline arguments, it is
assumed that the user is asking for help. In this case, a help message is printed that shows syntax
and (usually) describes the meaning of the switches. In general, program usage is of the following
form:

programName fileNames switches.
Probably the simplest example would be

sddsquery fileName,
which would invoke sddsquery to describe the contents of an SDDS file. A slightly more compli-
cated example would be

sddsquery fileName -columnList,
which invokes sddsquery to list just names of columns in a file.

Programs assume that any commandline argument beginning with a minus sign (’-’) is an option;
all others are assumed to be filenames. Note that case is ignored in commandline switches. The
specific meaning of a filename is dictated by its order on the commandline. For example, if two
filenames are given, the first would commonly be an input file while the second would commonly
be an output file.

In some cases, a command with a single filename implies replacement of the existing file. For
example,

sddsconvert fileName -binary

would replace the named file with a binary version of the same data. This command is completely
equivalent to

3

sddsconvert -binary fileName

That is, unlike many UNIX commands, the position of filenames relative to options is irrelevant.
One might also wish to make a new file, rather than replacing the existing file. This could be

done by
sddsconvert -binary fileName fileName2

Note that while the option may appear anywhere on the commandline, the order of the filenames
is crucial to telling the program what to do.

In following manual pages and in the program-generated help text, program usage is described
using the following conventions:

• The first token on the commandline is the name of the program.

• Items in square-brackets ([]) are optional. Items not in square brackets are required.

• Items in curly-brackets ({}) represent a list of choices. The choices are separated by a |

character, as in
{ choice1 | choice2 | choice3 }

• Items in italics are descriptions of arguments or data that must be supplied by the user.
These items are not typed literally as shown.

• Items in normal print are typed as shown, with optional abbreviation. These are usually
switch keywords or qualifiers. Any unique abbreviation is acceptable.

In addition to using files, most toolkit programs also take input from pipes, which obviates the
need for temporary files in many cases. For those programs that support pipes, one can employ
the -pipe option. This option provides a good example of what options look like. For example,
one could do the following to test binary-ascii conversion:

sddsconvert -binary -pipe=out fileName | sddsconvert -ascii -pipe=in fileName1

The -pipe=out option to sddsconvert tells it to deliver its output to a pipe; it still expects a
filename for input. Similarly, the -pipe=in option to sddsquery tells it to accept input from a
pipe.

The -pipe switch may be given in one of five forms: -pipe, -pipe=input,output, -pipe=output,input,
-pipe=input, -pipe=output . The first three forms are equivalent. In a usage message, these forms
would be summarized as -pipe[=input][,output]. One could also use abbreviations like -pipe=i,
-pipe=i,o, etc. For convenience in the manual, the data stream from or to a pipe will often be
referred to by the name of the file for which it substitutes. Note that you may not deliver more
than one file on the same pipe.

2 Manual Pages

4

2.1 burtrb

• description: burtrb reads values of process variables and writes them to a file. An input
file lists the process variables to be read. The output file (also called a snapshot file) can be
used by program burtwb to restore the process variables.

• example: The state of the APS storage ring is saved in the snapshot file SR.snp using the
request file SR.req:

burtrb -f SR.req -o SR.snp

where the contents of the file SR.req are

SDDS1

&column

name = ControlType, type = string, &end

&column

name = ControlName, type = string, &end

&data

mode = "ascii", no_row_counts=1 &end

pv S1A:Q1:CurrentAO

pv S1A:Q2:CurrentAO

...

Note that the header contain the minimal amount of information. There may be situations
where more columns need to be defined, as described elswhere in this manual.

• synopsis:

usage: burtrb -f req1 {req2 ...} {-l logfile} {-o outfile} {-d} {-v}

{-c ... comments ...} {-k keyword1 ... keywordn}

{-r retry count} {-sdds or -nosdds} {-Dname{=def}}

{-Ipathname}

where

-f req1 {req2 ...} - Request filenames. This is the only switch

that is not optional. You must specify at least one request

file.

-l logfile - Log filename. The name of the file where all logging

messages (e.g. error messages, reports of process variables

that were not found) go. The default is stderr.

-o outfile - Snapshot filename. The name of the file where the

snapshot information goes. The default is stdout.

-d - Debug. Save the files created by processing the request

files with the C preprocessor. The default is to delete these

5

files.

-v - Verbose. This increases the amount of information displayed

in the logfile.

-c ... comments ... - Comments. Adds comments to the header of

the snapshot file.

-k keyword1 ... keywordn - Keywords. Adds keywords to the header

of the snapshot file.

-r retry count - Number of additional attempts to wait for

connections. The program will attempt to find all the process

variables. If it is unsuccessful, it will try this many more

times to establish connections. The default value is 0.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly

specifying that the generated snapshot file will be

SDDS/non-SDDS compliant. The default is to adopt the SDDS

type from the input(s). If there is a heterogeneous set of

inputs (some SDDS and some non-SDDS), the default is to produce

and SDDS compliant snapshot file.

• files:

– input file:

The input file is an SDDS file with at least two columns:

∗ ControlName — Required string column for the process variable or device names.

∗ ControlType — Required string column for the control name type. For a process
variable name use “pv”; for a device name use “dev”.

The optional columns are:

∗ BackupMsg — String column for the device read message if the ControlType value
is “dev”. This column is transfered to the output file. If this column is absent then
the default read message is “read”, and the column BackupMsg is created in the
output file.

∗ RestoreMsg — String column for the device set message if the ControlType value
is “dev”. This column is transfered to the output file. If this column is absent then
the default read message is “read”, and the column RestoreMsg is created in the
output file.

– output file:

The output file contains the same columns as the input file plus additional ones:

∗ ValueString — String column containing the readback value as a ASCII string.

∗ Lineage — String column containing the composite device name. In the case that a
composite device was given as a control name in the input file, burtrb will expand
the composite device in its atomic devices, and write one row per atomic device in

6

the output file with the same Lineage value for each. If the control name in the
input file was a process variable or an atomic device then the lineage is the character
“-”. (A quirk of program burtrb is the use of the character “-” for the equivalent
of the empty string. A preferred way to specify a empty string would be simply “”,
but this hasn’t been implemented in burtrb.)

∗ BackupMsg — String column. If not specified in the input file, the default device
read message is written to this column.

∗ RestoreMsg — String column. If not specified in the input file, the default device
write message is written to this column.

Defined parameters in the output file are:

∗ TimeStamp — String giving the date.

∗ BurtComment — String given at the comment command line option.

• switches:

– -f file1 [file2] ... — Request files.

– -o outfile — Output file. If option is not present then stdout is the default.

– -c comment — A comment string to be added to the output file.

• see also:

– burtwb (2.2)

• author: N. Karonis, ANL

• manual page: L. Emery, ANL

7

2.2 burtwb

• description: burtwb reads values from a snapshot file, then write them to process variables.
This is the restore counterpart of the backup program burtrb.

• example: The state of the APS storage ring is restored by writing the content of the snapshot
file SR.snp to the appropriate process variables:

burtwb -f SR.snp

where the contents of the file SR.snp are

SDDS1

&description &end

¶meter

name = SnapType, type = string, &end

&column

name = ControlType, type = string, &end

&column

name = ControlName, type = string, &end

&column

name = Lineage, type = string, &end

&column

name = Count, type = long, &end

&column

name = ValueString, type = string, &end

&data

mode = ascii, no_row_counts=1 &end

! page number 1

Absolute

pv S1A:Q1:CurrentAO - 1 300.0

pv S1A:Q2:CurrentAO - 1 400.0

• synopsis:

usage: burtwb -f snap1 {snap2 ...} {-l logfile} {-o outfile}

{-c ... comments ...} {-k keyword1 ... keywordn}

{-d} {-v} {-p dep1 ... depn} {-r retry count} {-add} {-replace}

{-sdds or -nosdds}

where

-f snap1 {snap2 ...} - Snapshot filenames. This is the only

switch that is not optional. You must specify at least one

snapshot file.

-l logfile - Log filename. The name of the file where all logging

messages (e.g. error messages, reports of process variables

that were not found) go. The default is stderr.

8

-o outfile - Snapshot filename. If any of the snapshot files

read only notify values, this file is created and those values

are placed there. If none of the snapshot files have read only

notify values, then no file is created. The default is stdout.

-c ... comments ... - Comments. Adds comments to the header of

the snapshot file.

-k keyword1 ... keywordn - Keywords. Adds keywords to the header

of the snapshot file.

-d - Debug. Save the files created by processing the dependency

files with the C preprocessor. The default is to delete these

files.

-v - Verbose. This increases the amount of information displayed

in the logfile.

-p dep1 ... depn - Dependency filenames. The names of the

dependency files containing predicates to be evaluated before

writing the values from the snapshot files.

-r retry count - Number of additional attempts to wait for

connections. The program will attempt to find all the process

variables. If it is unsuccessful, it will try this many more

times to establish connections. The default value is 0.

-add - Absolute snapshots written as adds. All the absolute

snapshots, i.e., those taken directly off IOCs, will be written

as additions to the values found on the IOCs. The default is

to write the absolute snapshots as replacement values on the

IOCs.

-replace - Relative snapshots written as replacements. All the

relative snapshots, i.e., those generated by adding or

subtracting two snapshots, will be written to prelace the

values on the IOCs. The default is to write the relative

snapshots as additions to the values on the IOCs.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly

specifying that the generated snapshot file will be

SDDS/non-SDDS compliant. The default is to adopt the SDDS

type from the input(s). If there is a heterogeneous set of

inputs (some SDDS and some non-SDDS), the default is to produce

and SDDS compliant snapshot file.

• files:

9

– input file:

The input file is an SDDS file with at least three columns:

∗ ControlName — Required string column for the process variable or device name.

∗ ControlType — Required string column for the control name type. For a process
variable name use “pv”; for a device name use “dev”.

∗ Lineage — Required string column for the lineage of a device name. The values
aren’t important for an input file. A value of - can be used (signifies a blank string
to BURT programs).

∗ Count — Required long column. Needs to have a value of 1 for PVs and devices
that are single-valued, which is the case here.

∗ ValueString — Required string column containing the value to be restored as a
character string.

and one parameter:

∗ SnapType — Required string parameter describing the snapshot type. Valid values
are Absolute and Relative.

The optional columns are:

∗ RestoreMsg — String column for the device set message if the ControlType value
is “dev”. If this column is absent then the default restore message is “set”.

• switches:

– -f snap1 [snap1] ... — Snapshot files.

– -add — Adds the ValueString values to the process variables.

• see also:

– burtrb (2.1)

• author: N. Karonis, ANL

• manual page: L. Emery, ANL

10

2.3 knobconfig

• description: knobconfig assigns knobs to devices according to the input file. Knob assign-
ments are active only during program execution.

• example: Knobs are assigned for tune adjustment of the APS storage ring with this com-
mand:

knobconfig SR_tunes.cokn

where file SR_tunes.cokn contains weights for the various quadrupole magnets necessary for
independent tune adjustments. Part of the first data set of the file SR_tunes.cokn is shown
below:

SDDS1

&description

text="Knob Assignment Specification"

contents="knob assignment specification"

&end

¶meter name=ControlName, type=string &end

¶meter name=KnobDescription, type=string &end

¶meter name=ControlType, type=string &end

¶meter name=ControlUnits, type=string &end

¶meter name=Gain type=double &end

&column name=ControlName type=string &end

&column name=Weight type=double &end

&data mode=ascii, &end

S:NUx:fine ! ControlName

Triplet knob for x tune (0.0005/click) ! KnobDescription

dev ! ControlType

? ! ControlUnits

0.5 ! Gain

240 ! number of rows

S1A:Q1 1.488923268326000e-03

S1A:Q2 5.958927747443000e-03

S1A:Q3 4.242561180246000e-03

S1B:Q3 4.242561180246000e-03

S1B:Q2 5.958927747443000e-03

S1B:Q1 1.488923268326000e-03

S2A:Q1 1.488923268326000e-03

S2A:Q2 5.958927747443000e-03

...

• synopsis:

usage: knobconfig spec-file

purpose: Configures knobs.

Assigns knobs to devices and process variables

according to spec-file. Assignments are active

11

only during program execution. In general, it

is best not to run this utility in background.

Sample spec-file. Note that ControlMessage parm is optional:

SDDS1

&description

text="Knob Assignment Specification"

contents="knob assignment specification"

&end

¶meter name=ControlName

type=string

&end

¶meter name=ControlType

type=string

&end

¶meter name=ControlMsg

type=string

&end

¶meter name=ControlUnits

type=string

&end

¶meter name=Gain

type=double

&end

&column name=ControlName

type=string

&end

&column name=Weight

type=double

&end

&data mode=ascii

no_row_counts=1

&end

COMPDEVICENAME

dev

set

tune

0.01

P:Q1 1.0000

P:Q2 1.1134

PTB:Q3

dev

set

Amps

0.1

PTB:Q4:CurrentAO

pv

12

-

Amps

0.1

• files:

– input file:

Each data set in the input file defines the weights of the devices controlled by one knob.
The required parameters are:

∗ ControlName — String. The name of the composite device.

∗ ControlType — String. Descibes the type of control name. The only valid value is
”dev”.

∗ Gain — Double. Factor by which to multiply the Weight column values of each
constituent of the composite device.

An optional parameter is

∗ ControlMsg — String. The device message to be used. The default value is ”set”.

The parameters KnobDesciption and Units may be implemented in future versions of
knobconfig. For now, they may be defined as a data preparation aid. The required
columns are:

∗ ControlName — String column of names of atomic devices.

∗ Weight — Double column of relative weights of each atomic device. Multiplied with
the Gain, these are the values by which each device setpoints will be changed by
one tick of the knob.

• switches: None.

• author: C. Saunders, ANL

13

2.4 toggle

• description: toggle alternates between two sets of process variable values stored in snapshot
files and/or process variables specified on the command line. Time intervals and the values
of the process variables upon termination can be specified.

• example: Two states of the APS storage ring injection magnets are restored for 10 seconds
each by writing values of process variables listed in the snapshot files SRin.snp1 and SRin.snp2:

toggle SRin.snp1 SRin.snp2 interval=10,10

In this case the magnets return returns to the initial state upon termination.

• synopsis:

usage: toggle [snapshotfile1 [snapshotfile2]] [-controlname=PVname,value1[,value2] ...]

[-interval=interval1[,interval2]] [-cycles=number] [-finalset={0|1|2}]

[-prompt] [-verbose] [-warning]

• files:

– input files:

The input files are valid snapshot files as described in burtwb (2.2). At least three colums
must be defined:

∗ ControlName — Required column. String column for the process variable or device
name.

∗ ControlType — Required column. String column for the control name type. For a
process variable name use “pv”; for a device name use “dev”.

∗ ValueString — String column containing the value to be restored as a character
string.

Optional columns are:

∗ RestoreMsg — Optional column. String column for the device set message if the
ControlType value is “dev”. If this column is absent then the default read message
is “set”.

Both files must have the same set of PV names.

• switches:

– -controlname=<PVname>,<value1>[,<value2>] — Optional. Specified a PV to be
alternated. If only one value is given, then the second value is taken to be pre-existing.
These values are synchronized with the snapshot files if they are present.

– -interval=<interval1>[,<interval2>]— Optional. <interval1> and <interval2>

are the durations of PV value sets 1 and 2, respectively. If <interval2> isn’t present,
then <interval2>=<interval1>. If this option isn’t present, then the default interval
is 1 second each.

– -cycles=<number> — Optional number of cycles. Default is 1.

– -finalset={0|1|2} — Optional. Specifies which PV value set to apply at normal ter-
mination. 0,1, and 2 mean set of pre-existing values, first set and second set respectively.
During abnormal termination, the PVs are returned to their pre-existing values.

14

– -prompt — Optionally toggles values only on a <CR> key press.

– -verbose — Optionally prints extra information.

– -warning — Optionally prints warning messages.

• see also:

– burtwb (2.2)

• author: L. Emery, ANL

15

2.5 sddsalarmlog

• description: sddsalarmlog logs changes of alarm status for process variables named in an
input file.

• example: The status of the positron accumulator ring process variables are logged for a one
day duration.

sddsalarmlog PAR.alog PAR.alog.sdds -timeDuration=1,day

where the file PAR.alog is the input file containing the names of the process variables, and
the file PAR.alog.out is the output file.

• synopsis:

usage: sddsalarmlog <input> <output>

-timeDuration=<realValue>[,<time-units>]

[{-append[=recover] | -eraseFile | -generations[=digits=<integer>][,delimiter=<string>} |

-dailyFiles[=verbose]]

[-pendEventTime=<seconds>] [-durations] [-explicit[=only]] [-verbose]

[-comment=<parameterName>,<text>]

• files:

– input file:

The input file is an SDDS file with the required string column ControlName which
contains the names of the process variables whose status is to be monitored.

– output file:

The output file contains information on the process variable alarm status change, such
as the time of occurence, the alarm designation, the severity of the alarm, and the row
location of the previous alarm status change.

In order to save disk space sddsalarmlog logs integer codes (indexes) instead of the
actual string values for the control name, the alarm status and the alarm severity. The
integer codes are indices into one of three string arrays written to the output file. The
logging information can be recovered using SDDS tool sddsderef.

As an option, and for a direct interpretation of the output file, the control name, alarm
status and alarm severity can be written explicitly as string columns with or without
the integer codes. However this option uses up a lot more disk space.

In either case the following columns are defined:

∗ PreviousRow — Long column of row numbers. For each process variables alarm
status change, the row location of the previous alarm status change is written.

∗ TimeOfDay — Float column of system time in units of hours. The time does not
wrap around at 24 hours.

By default these columns are defined (except when the option -explicit=only is spec-
ified):

∗ ControlNameIndex— Long column indicating the process variable whose alarm sta-
tus changed. The value of this data is the index into the string array ControlNameString,
which is the list of all process variables monitored.

16

∗ AlarmStatusIndex — Short column indicating the alarm status. The value of this
data is the index into the string array AlarmStatusString, which is the list of all
possible alarm status values.

∗ AlarmSeverityIndex — Short column indicating the alarm status. The value of
this data is the index into the string array AlarmSeverityString, which is the list
of all possible alarm severity values.

These columns are created by the option -explicit:

∗ ControlName — String column for the process variable whose alarm status just
changed.

∗ AlarmStatus — String column for the alarm status.

∗ AlarmSeverity — String column for the alarm severity.

This column is created with option -durations:

∗ Duration — String column for the duration of the previous alarm state.

These arrays are created by default except when the option -explicit=only is specified:

∗ ControlNameString — String colunm of all process variables to be monitored.

∗ AlarmStatusString — String colunm of all possible alarm status values.

∗ AlarmSeverityString — String colunm of all possible alarm severity values.

These parameters are defined:

∗ InputFile — String parameter for the name of the input file.

∗ TimeStamp — String parameter for time stamp for file.

∗ PageTimeStamp — String parameter for time stamp for each page. When data
is appended to an existing file, the new data is written to a new page. The
PageTimeStamp value for the new page is the creation date of the new page. The
TimeStamp value for the new page is the creation date of the very first page.

∗ StartTime — Double parameter for start time from the C time call cast to type
double.

∗ YearStartTime — Double parameter for start time of present year from the C time
call cast to type double.

∗ StartYear — Short parameter for the year when the file was started.

∗ StartJulianDay — Short parameter for the day when the file was started.

∗ StartMonth — Short parameter for the month when the file was started.

∗ StartDayOfMonth— Short parameter for the day of month when the file was started.

∗ StartHour — Short parameter for the hour when the file was started.

• switches:

– -timeDuration=<realValue>[,<time-units>] — Specifies time duration for logging.
The default time units are seconds; one may also specify days, hours, or minutes.

– -append[=recover] —Specifies appending to the file ¡output¿ if it exists already. If the
recover qualifier is given, recovery of a corrupted file is attempted using sddsconvert, at
the risk of loss of some of the data already in the file.

– -eraseFile— If the output file already exists, then it will be overwritten by sddsalarmlog.

17

– -generations[=digits=<integer>][,delimiter=<string>] — The output is sent to
the file <SDDSoutputfile>-<N>, where <N> is the smallest positive integer such that the
file does not already exist. By default, four digits are used for formating <N>, so that
the first generation number is 0001.

– -pendEventTime=<seconds> — Specifies the CA pend event time, in seconds. The
default is 10 .

– -durations — Specifies including state duration in output.

– -connectTimeout — Specifies maximum time in seconds to wait for a connection before
issuing an error message. 60 is the default.

– -explicit[=only] — Specifies that explicit columns with control name, alarm status,
and alarm severity strings be output in addition to the integer codes. If the ”only”
qualifier is given, the integer codes are omitted from the output.

– -verbose — Prints out a message when data is taken.

– -precision={single|double} — Selects teh data type for the statistics columns.

– -updateInterval=<integer> — Number of sample sets between each output file up-
date. The default is 1.

– -ezcaTiming[=<timeout>,<retries>] — Sets EZCA timeout and retry parameters.

– -noezca — Obsolete.

– -dailyFiles – The output is sent to the file ¡SDDSoutputfile¿-YYYY-JJJ-MMDD.¡N¿,
where YYYY=year, JJJ=Julian day, and MMDD=month+day. A new file is started
after the midnight.

– -oncaerror={usezero|skiprow|exit} — Selects action taken when a channel access
error occurs. The default is using zero (usezero) for the value of the process variable
with the channel access error, and resuming execution. The second option (skiprow) is
to

• see also:

• author: M. Borland, ANL

18

2.6 sddscaramp

• description: sddscaramp performs ramping of process variables between the present state
and the states in one or more SDDS files.

• example: The following example shows how one would use sddscaramp to ramp 50% of the
way to a new steering configuration, using 10 steps and pausing 1 second between steps:

sddscaramp -rampTo=steering.snap,steps=10,pause=1,percentage=50

The file steering.snap contains corrector magnet power supply settings, such as might be
saved to an SDDS file using the burtrb program.

• synopsis:

sddscaramp

-rampTo=<filename>,steps=<number>,pause=<seconds>[,percentage=<value>]

[-rampTo ...] [-dataColumn=<name>] [-verbose]

• files:

The input files are SDDS files. There must be a string column named ControlName, Device,
or DeviceName that contains the process variable names. There must also be a string column
named ValueString, a numerical column named Value, or a column of either type with
the name specified by the -dataColumn option; this column contains the final value for the
corresponding process variable.

When data is supplied in a string column, sddscaramp needs a way to determine if the data
value is actually a number rather than a literal string value (e.g., an enumerated value). The
optional IsNumerical column can be used for this purpose. If supplied, this column should
contain character values y or n, indicating that each PV (respectively) does or does not have
numerical values. If the IsNumerical column does not exist or is not of character type, then
sddscaramp uses an internal algorithm to decide whether the data for each PV is numerical
or not. This may fail in the case of enumerated values that contain numbers, resulting in
incorrectly restored values. For reliable results, the use of IsNumerical with string data is
required. If the data is in a numerical column to begin with, of course, there is no ambiguity.

• switches:

– -rampTo=filename,steps=number,pause=seconds,[percentage=value] — Specifies
a file to ramp to, the number of steps in the ramp, and the time to wait between sending
setpoints for each step. Optionally, one may specify ramping only part of the way to
the configuration in the file. If several -rampTo options are given, sddscaramp ramps to
each of them in the order given.

– -dataColumn=name — Specifies the name of a string column in the input files that
contains the PV values. By default, the program uses ValueString.

– -verbose — If given, informational text is printed out as the ramping proceeds.

• see also:

– burtrb (2.1)

19

– burtwb (2.2)

• author: M. Borland (ANL)

• programmers: R. Soliday, M. Borland (ANL)

20

2.7 sddscasr

• description: sddscasr is an alternative version of casave and carestore. sddscasr is more
efficient and has more features than casave/carestore. It can also replace burtrb/burtwb for
saving and restoring configurations.

• example: Save a snapshot of APS storage ring:

sddscasr SR.req SR.snapshot -save -pendIOTime=100

Restore a snapshot:

sddscasr snapshot -restore -pendIOTime=100

save snapshot with daemon mode, the output file in following command is out1-¡current date
and time¿. Whenever the value of casavePV (oag:casave) is changed to 1, a new saving starts
and data is written to a new output file with rootname of out1. (var1 is the input file contains
PVs to be read)

sddscasr var1 out1 -runControlPV=string=oag:ControlLawRC

-runControlDesc=string=test -daemon -daily -save -pidFile=pidFile

-casavePV=oag:casave -logFile=logFile &

• synopsis:

usage: sddscasr <inputfile> <outputRoot> [-verbose]

[-daemon] [-dailyFiles] [-semaphore=<filename>] [-save] [-restore] [-logFile=<filename>]

[-runControlPV={string=<string>|parameter=<string>},pingTimeout=<value>,pingInterval=<v

[-runControlDescription={string=<string>|parameter=<string>}] [-unique] [-outputFilePV=<pvname

[-pidFile=<pidFile>] [-casavePV=<string>] [-interval=<seconds>] [-pipe=[input|output]]

[-numerical] [-waveform=[rootname=<string>][,directory=<string>]]

[-outputFilePV=<pvname>] [-casavePV=<string>]

• files:

– input file:

The input file is an SDDS file with a string column. For saving snapshot, the input file
contains at least one string column - ControlName. For restoring snapshot, the input file
contains at least two strin columns - ControlName and ValueString, where ValueString
is the value of the PVs to be restored.

– output file:

The output file only exists for saving snapshot. The output file contains everything
in the input file, except that the ValueString column (if the input file has ValueString
column) is update. And three more columns are created if they do not exist in the input
file and their values are updated.

∗ ValueString: the values of the PVs given in the input file.

∗ IndirectName: its value is - for scalar PV or PVname for waveform PV.

∗ CAError: its value is y if error occurred during channel access for corresponding PV
or n if no error occurrs.

21

• switches:

– inputFile — inputFile name (SDDS file).

– outputRoot — output file or root if -dailyFiles option is specified.

– pipe[=input][,output] — The standard SDDS Toolkit pipe option. -dailyFile option
is ignored if -pipe=out or -pipe option is present.

– semaphore — specify the flag file for indicating CA connection completence. the current
outputFile name is written to semaphore file.

– daemon — run in daemon mode, that is, stay in background and start running whenever
signal event arrived until terminating signal received.

– save — read the values of PVs given in the input file and write to the output file.

– restore — set the values of process variables given in the input file. -save and -restore
can not be given in the same time.

– logFile — file for logging the printout information.

– pidFile — provide the file to write the PID into.

– interval — the interval (in seconds) of checking monitor pv or the sleeping time if no
signal handling arrived.

– pendIOTime — specifies maximum time to wait for connections and return values. De-
fault is 30.0s. It is important to give enough pendIOTime, otherwise, the CA connection
could not set up and errors would occur. For SR request file, normally 100 seconds is
approriate.

– casavePV — a monitor pv to turn on/off sddscasr. Whenever the casavePV is set to 1,
sddssave make a save or restore and change the pv back to 0.

– outputFilePV — a string pv to store the output file name (exclude the path).

– unique — remove all duplicates but the first occurrence of each PV from the input file
to prevent channel access errors when setting pv values.

– description — specify SnapshotDescription parameter of output file.

– runControlPV=string=<string>|parameter=<string>[,pingTimeout=<value>,pingInterval=<value

— specifies the runControl PV record.

– runControlDescription — specifies a string parameter whose value is a runControl
PV description record.

– numerical —return a numerical string value rather than a string for enumerated types.

– waveform=rootname=<string>[,directory=<string>] —provide the waveform root-
name and directory in restore option. By default, the directory is pwd, the rootname is
the SnapshotFilename parameter in the input file.

– outputFilePV — a charachter-waveform pv to store the output file name with full path.

– casavePV — a monitor pv to turn on/off sddscasr. When the pv changed from 0 to 1,
sddssave make a save and change the pv back to 0.

• see also:

– burtrb (2.1)

– burtwb (2.2)

• author: H. Shang, ANL

22

2.8 sddscontrollaw

• description: sddscontrollaw performs simple feedback on process variables. The input
file defines a gain matrix in a simple control law equation. The set of process variables for
measurement are given by the names of the numerical data columns, and the set of process
variables for control are given by a string column. By default, the feedback tries to regulate
the values of the measurement to zero. The output file is a log of all process variables during
the feedback. For robustness, a file of tests for a set of process variables may be defined so
that the feedback may be suspended when any tests fail.

• example: The trajectory of the LTP beamline and the energy of the linac upstream of the
LTP beamline is controlled with this command:

sddscontrollaw LTP.InvR12 LTPfeedback.out -interval=5 -steps=3600 \

-gain=0.75 -warning

where the contents of the file LTP.InvR12 are

SDDS1

&column

name = "CorrectorNames", type = "string", &end

! LTP:PH* are readbacks of beam position monitors

&column

name = "LTP:PH1", type = "double", &end

&column

name = "LTP:PH2", type = "double", &end

&column

name = "LTP:PH3", type = "double", &end

&column

name = "LTP:PH4", type = "double", &end

&data

mode = ascii, &end

! LTP:H[124] are dipole steering magnets.

LTP:H1 1.45e-01 7.95e-02 1.84e-01 -3.70e-02

LTP:H2 0.00e-00 2.12e-01 3.34e-01 8.39e-02

! Sled timing controls the linac energy.

L5:SledTiming 0.00e-00 0.00e-00 8.25e-03 9.45e-03

LTP:H4 0.00e-00 0.00e-00 -9.81e-03 1.44e-01

• synopsis:

usage: sddscontrollaw <inputfile> [<outputfile>]

-controlQuantityDefinition=<file>

[-gain=<real-value>] [-interval=<real-value>]

[-steps=<integer=value>] [-updateInterval=<integer=value>]

[{-integration | -proportional}] [-holdPresentValues]

[-verbose] [-dryRun]

[-testValues=<SDDSfile>] [-warning]

[-ezcaTiming=<timeout>,<retries>] [-groupEzca]

Perform simple feedback on APS control system process variables using ezca calls.

23

• files:

– input file:

The input file is an SDDS file with a string column and at least one numerical column.
The first string column encountered gives the list of control process variables, the other
string columns being ignored. The names of the numerical columns are the measurement
process variables. The numerical data columns form a matrix which will be used in a
simple control-law equation such as

un = −Kxn (1)

or
un = un−1 − Kxn. (2)

The quantity xn is the vector of measurement process variable values at step n, K is
the matrix, un is the vector of control process variables calculated to reduce the values
of the measurement process variables on the next iteration. The first equation refers to
proportional control, while the second one refers to integral control. For trajectory or
orbit correction in accelerators, where xn are beam position monitor readbacks, and un

are steering magnet setpoints, one chooses the integral control equation.

– control quantity definition file:

An optional control quantity definition file may be specified. This file allows one to use
names in the matrix input file that are not really process variables, but more simplified
and descriptive names. This situation can occur if the matrix file is obtained from post-
processing of sddsexperiment output data, a common way to generate the correction
matrix empirically. The control quantity definition file is a cross-reference file which
sddscontrollaw uses to match the input file names to real PV names. Two columns
are required:

∗ SymbolicName — String. Data must match all column names in the input file, and
string column data in the input file.

∗ ControlName — String. Corresponding PV names.

– test values file:

To make sddscontrollaw more robust, one can implement tests on any process variable,
not necessarily those involved in the feedback itself. If any of the tests fail, then the
feedback is suspended until the test suceeds. The test consist of checking whether a
process variable is within a specified range or not. The testValues file has three required
columns and one optional one:

∗ ControlName — Required string column. PV names to test.

∗ MinimumValue, MaximumValue — Required double columns. Defines a valid range
for corresponding PVs. An error is generated when MinimumValue> MaximumValue.

∗ SleepTime — Optional double. Specifies sleep (or pause) time before attempting
another test.

– output log file:

The output file contains one data column for each process variables defined in the input
file. By default, the data type is float (single precision). One row is written at every
time step.

Two time columns and a step column are defined:

24

∗ Time — Double. Elapsed time of readback since the start of epoch.

∗ ElapsedTime — Double. Elapsed time of readback since the start of execution.

∗ TimeOfDay — Double. System time in units of hours. The time does not wrap
around at 24 hours.

∗ Step — Long. Step number.

There are two parameters defined:

∗ TimeStamp — String. Time stamp for file.

∗ Gain — Double. Gain factor specified on the commandline.

• switches:

– -controlQuantityDefinition=<file>— an optional cross-reference file which matches
the simplified names used in the inputfile to real PV names. Required string column
are SymbolicName and ControlName. The data in column SymbolicName must match
all column names in the input file, and string column data in the input file. Data in
ControlName must be valid process variable names.

– -gain=<real-value> — quantity multiplying the inputfile matrix. If the gain matrix
is exactly equal to the inverse response matrix between the control and measurement
process variables, then this value should be less than one. If instability occurs in the
feedback, then the program should be re-run with a reduced value for gain.

– -interval=<real-value> — Specifies the interval between readings. The time interval
is implemented with a call to usleep between calls to the control system. Because the
calls to the control system may take up a significant amount of time, the average effective
time interval may be longer than specified.

– -steps=<integer-value> — Number of iterations for the feedback before normal exit-
ing.

– -updateInterval — Obsolete.

– -integral | -proportional— Switch the control law to either integral or proportional
control; use integral control for orbit correction; the default control law is integral control.

– -holdPresentValues — Causes regulation of the readback variables to the values at
the start of the running. In this case, the control law equations are

un = −K(xn − x0) (3)

or
un = un−1 − K(xn − x0). (4)

where x0 is the vector of initial values of measurement PVs (i.e. values before running
the program).

– -verbose — prints out a message when data is taken.

– -dryrun — readback variables are read, but the control variables aren’t changed.

– -testValues=<file> — sdds format file containing minimum and maximum values of
PV’s specifying a range outside of which the feedback is temporarily suspended. Column
names are ControlName, MinimumValue, MaximumValue, SleepTime (optional).

– -warning — prints warning messages.

25

– -ezcaTiming[=<timeout>,<retries>] — Sets EZCA timeout and retry parameters.

• see also:

– sddsexperiment (2.9)

• author: L. Emery, H. Shang, R. Soliday, ANL

26

2.9 sddsexperiment

• description: sddsexperiment varies process variables and measures process variables, with
optional statistical analysis. An input file of namelist commands gives the specific instruc-
tions. The results are recorded in one or more SDDS files.

• example: The strength of a beamline horizontal corrector (LTP:H1) is varied while the
readbacks at a horizontal beam position monitor (LTP:PH1) are recorded. The output file is
LTP:H1.sdds.

sddsexperiment LTP:H1.exp LTP:H1.sdds

where the contents of the file LTP:H1.exp are

&measurement control_name = "LTP:PH1:x",

column_name="LTP:PH1:x", units=mm,

number_to_average = 10,

&end

&variable control_name = "LTP:H1:CurrentAO",

column_name="LTP:H1:CurrentAO"

! the corrector is varied in 5 steps from -1.0 to 1.0 amps.

index_number = 0, index_limit = 5,

initial_value = -1.0, final_value = 1.0,

&end

&execute

post_change_pause=4,

intermeasurement_pause=1

&end

where the line starting with a “!” is a comment.

• synopsis:

usage: sddsexperiment <inputfile> [<outputfile-rootname>]

[-echoinput] [-dryrun] [-summarize] [-verbose]

[-ezcaTiming=<timeout>,<retries>]

• files:

– input file:

The input file consists of namelist commands that set up and execute the experiment.
The functions of the commands are described below.

∗ variable — specifies a process variable to vary, and the range and steps of the
variation. More than one variable command may be defined, so that many process
variables may vary at a time. When an arbitrary sequence of setpoint values is
required, the setpoints can be read in from a file.

27

∗ measurement — specifies a process variable to measure at each step during the
experiment. Instead of using many measurement namelist, one can optionally use a
sddsmonitor-compatible file.

∗ execute — start executing the experiment. One group of variable, measurement
and execute commands may follow another in the same file for multiple experiments.

∗ erase — deletes previous variable or measurement setups.

∗ list_control_quantities— makes a cross-reference file for process variable names
and column names of the data file.

∗ system_call — specifies a system call (usually a script) to be executed either before
a measurement or before setting a process variable.

The following text describes all the namelist commands and their respective fields in
more detail. The command definition listing is of the form

&<command-name>

<variable-type> <variable-name> = <default-value>

.

.

.

&end

where the part <variable-type>, which doesn’t appear in an actual command, is used
to illustrate the valid type of the value. The three valid types are:

∗ double — for a double-precision type, used for most physical quantity variables,

∗ long — for an integer type, used for indexes and flags.

∗ STRING — for a character string enclosed in double quotes.

An actual namelist in an input file should look like this:

&<command-name>

[<variable-name> = <value>,]

...

&end

In the namelist definition listings the square brackets denotes an optional component.
Not all variables need to be defined – the defaults may be sufficient. Those that do need
to be defined are noted in the detailed explanations. The only variables that don’t have
default values in general are string variables.

28

variable

∗ function: Specifies a process variable to vary, and the range and steps of the varia-
tion. Values of variables at each measurement step are written to an SDDS output
file. The readback-related fields are used to confirm that the physical device has
responded to a setpoint command at every step (and substep) within some toler-
ance. Readback is enabled when readback_attempts and readback_tolerance are
defined with non-zero positive values.
When an arbitrary sequence of setpoint values is required (say a binary sequence),
the values can be read in from an SDDS file specified by the values_file field. The
fields of &variable associated for the range and steps are ignored in this case.
With multiple variable commands, variables may be varied in a multi-dimensional
grid. For example, variables may be varied independently of each other, or some
groups of variables may vary together forming one axis of a multi-dimensional grid
(see item index_number).

&variable

STRING control_name = NULL

STRING column_name = NULL

STRING symbol = NULL

STRING units = "unknown"

double initial_value = 0

double final_value = 0

long relative_to_original = 0

long index_number = 0

long index_limit = 0

STRING function = NULL

STRING values_file = NULL

STRING values_file_column = NULL

long substeps = 1

double substep_pause = 0

double range_multiplier = 1

STRING readback_name = NULL

double readback_pause = 0.1

double readback_tolerance = 0

long readback_attempts = 10

long reset_to_original = 1

&end

∗ control_name — Required. Process variable name to vary.

∗ column_name — Required. Column name for the variable data recorded in the
output file.

∗ symbol — Optional. Symbol field for the above column definition of the variable
data.

∗ units — Optional. Units field for the above column definition of the variable data.

∗ initial_value — Required. The initial value of the process variable in the varia-
tion.

∗ final_value — Required. The final value of the process variable in the variation.

∗ index_number — Required. The counter (or index) number with which the defined
variation is associated. In a sddsexperiment run, counters must be defined in an

29

increasing order with no gaps starting from counter 0. That is, the first variable
command of the file must have index_number = 0. The second variable command
must have index_number = 0 or 1. In the former case, the two variables will move
together with the same number of steps according their respective initial_value

and final_value. In the latter case, the two variables will vary independently of
each other with possibly different number of steps in a 2-dimensional grid.
Counter number n is nested within counter n + 1. Therefore it might be efficient to
assign devices with slower response times to higher index_number counter.

∗ index_limit — Normally required. Number of steps in the variation. Measure-
ments are taken at each step. When more than one variable is associated with the
same counter, only the index_limit of the first variable definition for that counter
need to be defined. If index_limit is defined in variable commands of the same
index_number value, then the first index_limit remain in force.

∗ relative_to_original— Optional. If non-zero, then the variation range is defined
relative to the original process variable value (i.e. the value prior to running the
program).

∗ range_multiplier— Optional. Factor by which the range, final_value - initial_value,
is multiplied. New values of initial_value and final_value are calculated while
keeping the midpoint of the range the same.

∗ function — Optional. A string of rpn operations used to transform the range
specified by initial_value, final_value, and index_limit. For convenience, a
few values are pushed onto the stack and are available to the user: the original value
of the process variable, and the calculated grid value for the process variable on the
current step or substep. The calculated values are recorded in the output file. The
environment variable RPN_DEFNS is used to read a rpn definition file at the start of
the execution of sddsexperiment.

∗ values_file — Optional. An SDDS data file containing setpoints for the variable.
This is useful is one has arbitrary setpoints values to apply. The values of the fields
initial_value, final_value, _substeps, range_multiplier and index_limit

are ignored.
One can have other variable namelists with the same index_number that don’t use
a file for the values. The default index_limit of the other variable will be set to
the number of setpoint in the values file. Thus the values in the file and the values
calculated for the other variable will vary together with the same number of steps.

∗ values_file_column— Required when values_file is specified. values_file_column
gives the column name of the setpoints data in file values_file.

∗ substeps — Optional. If greater than one, the steps are subdivided into this num-
ber. Measurements are not made at substeps. Substeps are useful when the physical
device associated with the process variable cannot reliably make steps as large as
those that might be defined with initial_value, final_value, and index_limit.

∗ substep_pause — Optional. Number of seconds to pause after the variable change
of each substeps.

∗ readback_name — Optional. Readback process variable name associated with
control_name. The default value for readback_name is control_name.

∗ readback_tolerance — Optional. Maximum acceptable absolute value of the dif-
ference between the process variable setpoint and its readback. A positive value is
required in order to enable readbacks.

30

∗ readback_pause — Optional. Number of seconds to pause after each reading of
the readback_name process variable. This pause time is in addition to other pauses
defined.

∗ readback_attempts— Optional. Number of allowed readings of the readback_name
process variable and readback pauses after a variable change has occured. After this
number of readings, the program exits. The first readback is attempted immediately
(i.e. no pause) after sending a setpoint command to the control_name. A positive
value is required in order to enable readbacks.

∗ reset_to_original — Optional. A value of 1 means that the variable is reset to
its original value when the experiment terminates normally or abnormally.

31

measurement_file

∗ function: specifies a SDDS data file containing the names of the process variables
to measure at each step during the experiment.

&measurement_file

STRING filename = NULL

long number_to_average = 1

long include_standard_deviation = 0

long include_sigma = 0

double lower_limit = 0

double upper_limit = 0

long limits_all = 0

&end

∗ filename — Required. SDDS file containing measurement process variables. The
required and optional column definitions closely resembles those used in sddsmonitor.
The columns are:

· ControlName — Required string data for the process variable names.

· ReadbackName— Optional string data for the measurement data columns names
of the experiment output file. If the column is not present, then the experiment
output file’s columns names uses the measurement process variable names them-
selves.

· NumberToAverage — Optional long data giving the number of measurements to
average at each step of the experiment. The average value of the measurements
for each process variable is written to the output file. Therefore individual
readings are not recorded.

· IncludeStDev — Optional long data. If non-zero, then the standard deviations
of measurements are calculated and a column in the output file for this quantity
is generated.

· IncludeSigma — Optional long data. If non-zero, then the sigma of measure-
ments are calculated and a column in the output file for this quantity is gener-
ated.

· LowerLimit, UpperLimit — Optional double data. Must have both or neither.
Specifies a range outside of which the measurement data is to be rejected, and the
measurement be retaken. If the number of invalid measurements (reset to 0 at
each measurement step) equals or exceeds the value of allowed_limit_errors
(default of 1) in command execute, then the program aborts. The average
values written to the output file excludes measurements outside this range.

· LimitsAll — Optional long data. If non-zero for a particular PV, then out-of-
range data for this PV causes all other PVs to be remeasured. By default, only
the out-of-range PV is remeasured.

Only the first data page of file filename is read in. For those optional columns above
that are not defined, then the following measurement_file fields will act as defaults
(note the different spellings):number_to_average, include_standard_deviation,
include_sigma, lower_limit, upper_limit, limits_all.

32

measurement

∗ function: specifies a process variable to measure at each step during the experiment.
This command is compatible with measurement_file, as both commands merely
adds to an internal list of measurement PV.

&measurement

STRING control_name = NULL

STRING column_name = NULL

STRING symbol = NULL

STRING units = "unknown"

long number_to_average = 1

long include_standard_deviation = 0

long include_sigma = 0

double lower_limit = 0

double upper_limit = 0

long limits_all = 0

&end

∗ control_name — Required. Process variable name to measure.

∗ column_name — Required. Column name for the measurement data recorded in the
output file.

∗ symbol — Optional. Symbol field for the above column definition of the measure-
ment data.

∗ units — Optional. Units field for the above column definition of the measurement
data.

∗ number_to_average — Optional. Number of readings to average. The output data
is the average value. The individual readings are not recorded.

∗ include_standard_deviation — Optional. Calculate the standard deviation (a
measure of the distribution) of the measurement, and generate a column in the
output file for this quantity.

∗ include_sigma — Optional. Calculate the sigma (error of the mean) of the mea-
surement, and generate a column in the output file for this quantity.

∗ lower_limit, upper_limit — Optional. Defines a range of validity for the indi-
vidual measurements. If the number of invalid measurements (reset to 0 at each
measurement step) equals or exceeds the value of allowed_limit_errors (default
of 1) in command execute, then the program aborts. The average values written
to the output file excludes measurements outside this range.

∗ limits_all — Optional. If non-zero, then out-of-limits data for this PV causes all
PVS to be remeasured. By default, only the out-of-limit PV is remeasured.

33

execute

∗ function: start executing the experiment. Some global parameters are defined here.

&execute

STRING outputfile = NULL

double post_change_pause = 0

double intermeasurement_pause = 0

double rollover_pause = 0

long post_change_key_wait = 0

long allowed_timeout_errors = 1

long allowed_limit_errors = 1

double outlimit_pause = 0.1

long repeat_reading = 1

double post_reading_pause = 0.1

double ramp_pause = 0.25

long ramp_steps = 10

&end

∗ outputfile — Optional. SDDS output file of variable and measurement data. The
string may contain the string “%s” which is substituted with the rootname value
of the command line. If rootname is not given, then the root of the intput file is
substituted . If outputfile is null, then the root of the input file is used for the
output file. See description of output file below.

∗ post_change_pause — Optional. Number of seconds to pause after each change
before making measurements.

∗ intermeasurement_pause — Optional. Number of seconds to pause between each
measurement. Individual measurements for averaging are taken at this interval.

∗ rollover_pause — Optional. Number of seconds to pause after a counter has
reached its upper limit, and must rollover to zero. This allows any physical devices
associated with the counter to settle after a change equal to the total range of the
variation.

∗ post_change_key_wait — Optional. If non-zero, then wait for a key press after
making variable changes but before taking measurements. A prompt is given.

∗ allowed_timeout_errors — Optional. Number of timeout ezca errors allowed
before aborting the program.

∗ allowed_limit_errors — Optional. Number of invalid range measurement errors
allowed before aborting the program. The valid range of a measurement is specified
in the measurement command.

∗ outlimit_pause — Optional. Number of seconds to pause after an invalid range
measurement error occured. This is to permit equipment time to recover from
whatever glitch caused the out-of-limit reading.

∗ repeat_reading — Optional. The measurements and statistical analyses are re-
peated this number of times for each variable settings. A row of data is written to
the output file for each repitition.

∗ post_reading_pause — Optional. Number of seconds to pause after taking a set
of measurements and making a statistical analysis. If measurements are repeated
then the pause is repeated after each set of measurements.

34

∗ ramp_steps — Optional. Number of steps in the variables PV ramp which occurs
at the start and the end of the experiment.
Ramping is necessary for some devices that do not respond well to large changes to
their setpoints. Ramping is done at the start of the experiments to slowly change
the variable PVs from their current values to their initial values. Another ramp is
done at the end to slowly bring the variable PVs from their final values back the
original values. Ramping back to original values is also done when the experiment
aborts for some reason.

∗ ramp_pause — Optional. Time interval at each step of the variables PV ramp which
occurs at the start and the end of the experiment. This is not the same variable as
the pause between variable changes during the experiment.

35

erase

∗ function: deletes previous variable or measurement setups.

&erase

long variable_definitions = 1

long measurement_definitions = 1

&end

∗ variable_definitions — Optional. If non-null, then all the variable definitions
are erased.

∗ measurement_definitions — Optional. If non-null, then all the measurement
definitions are erased.

list_control_quantities

∗ function: makes a cross-reference file for process variable names and column names
of the data file.

&list_control_quantities

STRING filename = NULL

&end

∗ filename— Required. Name of file. Columns defined are ControlName, SymbolicName,
and ControlUnits.

36

system_call

∗ function: specifies a system call (usually a script) to be executed repeatedly during
the experiment.

&system_call

STRING command = NULL

long index_number = 0

long index_limit = 0

double post_command_pause = 0

double pre_command_pause = 0

long append_counter = 0

STRING counter_format = "%ld"

long call_before_setting = 0

long call_before_measuring = 1

STRING counter_column_name = NULL

&end

∗ command — Required. Name of shell command or script to execute.

∗ index_number — Required. Counter number with which the command will be
associated. The command is executed when this counter is advanced or rolled over.

∗ index_number — Optional. Number of times the command is executed for the
associated counter. This field is used only when the value of index_number above
defines a new counter.

∗ post_command_pause— Optional. Number of seconds to pause after the completion
of the command.

∗ pre_command_pause — Optional. Number of seconds to pause before executing the
command.

∗ append_counter — Optional. If non-zero, the counter value is appended to the
command when the system call is made.

∗ counter_format — Optional. Format for the counter if the counter value is ap-
pended to the command.

∗ call_before_setting, call_before_measuring — Optional. At a counter ad-
vance or rollover the command can be executed in one of three ways:

· before both variable changes and measurements:
call_before_setting=1, call_before_measuring=1

· after variable changes and before measurements:
call_before_setting=0, call_before_measuring=1

· after both variable changes and measurements:
call_before_setting=0, call_before_measuring=0

If multiple measurements are required for averaging, the command is not executed
between these measurements.

∗ counter_column_name — Optional. If non-null, a column in the output file with
this name is defined. The values written to this column are the number of times the
command had been called minus one. This value doesn’t rollover with its associated
counter.

37

– output file:

The output file contains one data column for each measurement and control process
variable. The names of these data columns are taken from the column_name field of
the respective measurement and variable commands. The data are written as double
precision floating point numbers. In addition, some time columns and parameters are
defined:

∗ Time — Double column of time since start of epoch. This time data can be used by
the plotting program sddsplot to make the best coice of time unit conversions for
time axis labeling.

∗ ElapsedTime — Double column of elapsed time of readback since the start of the
experiment.

∗ TimeOfDay — Double column of system time in units of hours. The time does not
wrap around at 24 hours.

∗ TimeStamp — String parameter of time stamp for file.

– control quantities list file:

This file contains process variable names, readback column names, and units as string
data. This data can be used for cross-referencing. The columns defined in this file are:

∗ ControlName— String column. Value of control_name field given in the measurement
and variable commands.

∗ SymbolicName— String column. Value of column_name field given in the measurement
and variable commands.

∗ ControlUnits — String column. Value of units field given in the measurement

and variable commands.

• switches:

– -echoinput — echos input file to stdout.

– -dryrun — the “variable” process variables are left untouched during the execution. The
“measurement” process variables are still read. The pauses are still in effect. System
calls are not made.

– -summarize — gives a summary of the experiment before executing it.

– -verbose[=very] — prints out information during the execution such as notification of
setting and reading process variables. The option very prints out the average measure-
ment values.

– -ezcaTiming=<timeout>,<retries> — sets EZCA timeout and retry parameters

– -describeinput — Printouts the list of namelist commands and fields of the input file.

• see also:

– sddsvexperiment (2.19)

• author: M. Borland, L. Emery, H. Shang and R. Soliday ANL

38

2.10 sddsfeedforward

• description: sddsfeedforward performs feedforward on process variables. Feedforward
essentially means that one or more process variables are set according to a predetermined
function of other process variables. In sddsfeedforward, the user supplies a series of tables
that are used to interpolate values of a single actuator as a function of a single readback.
Any number of tables may be given, so that any number of actuators may be driven by any
number of readbacks. Each actuator is, however, driven by only one readback. One readback
may drive any number of readbacks.

• example:

sddsfeedforward ID1GapCompensation.sdds -interval=10,s

where the file ID1GapCompensation.sdds contains the following data:

ReadbackName = ID1:Gap ActuatorName = S1B:H1:CurrentAO

ReadbackValue ActuatorValue

150.000 0.000

100.000 0.000

50.000 1.000

40.000 10.000

30.000 20.000

20.000 35.000

15.000 74.000

11.000 99.000

At each iteration step, ID1:Gap is read and sddsfeedforward intepolates a new value for
S1B:H1:CurrentAO based on this table, which it writes to the PV.

• synopsis:

sddsfeedforward <inputfile>

[-interval=<real-value>] [-steps=<integer=value>]

[-verbose] [-dryRun]

[-averageOf=<number>[,interval=<seconds>]]

[-testValues=<SDDSfile>]

[-ezcaTiming=<timeout>,<retries>]

[-runControlPV=string=<string>[,pingTimeout=<value>]] [-runControlDescription=<strin

[-CASecurityTest]

• files:

– input file:

The input file is an SDDS file with the following elements:

∗ Parameters

· ReadbackName — Required string parameter giving the name of the readback
for this table. This is the process variable that is read from EPICS. Its value is
used to interpolate a new value for the actuator.

39

· ActuatorName — Required string parameter giving the name of the actuator
for this table. This is the process variable that is set by the program according
to interpolation with the readback values.

· ReadbackChangeThreshold — Optional floating-point value giving the amount
by which the process variable named in ReadbackName must change from the
previous iteration’s value in order for a change to be made for the actuator.
Most useful if the readback is a little noisy and one doesn’t want the actuator
to be changed pointlessly. If the same process variable is named as readback
for several actuators, then the smallest value of the change threshold is the one
used.

· ActuatorChangeLimit — Optional floating-point value giving the maximum
amount by which the actuator should be changed in a single iteration. If sev-
eral actuators have the same readback process variable, then they are limited
together by the most constraining of the limits. In such a case, the vector of
changes is scaled to bring all the changes within the respective limits.

∗ Columns

· ReadbackValue — Required floating-point column giving values of the readback
for an interpolation table.

· ActuatorValue — Required floating-point column giving values of the actuator
for an interpolation table.

– test values file:

To make sddsfeedforward more robust, one can implement tests on any process vari-
able, not necessarily those involved in the feedforward itself. If any of the tests fail,
then the feedforward is suspended until the test suceeds. The test consist of checking
whether a process variable is within a specified range or not. The testValues file has
three required columns and one optional one:

∗ ControlName — Required string column giving process variables names to test.

∗ MinimumValue, MaximumValue — Required floating-point columns, defining a valid
range for corresponding PVs. It is an error if MinimumValue > MaximumValue.

∗ SleepTime— Optional floating-point column, specifying sleep (or pause) time before
attempting another test.

• switches:

– interval=<real-value> — Specifies the interval in seconds between readings. The
time interval is implemented with a call to usleep between calls to the control system.
Because the calls to the control system may take up a significant amount of time, the
average effective time interval may be longer than specified.

– steps=<integer-value> — Number of iterations for the feedforward before normal
exiting.

– verbose — prints out a message when data is taken.

– dryRun — readback variables are read and computations are performed, but the control
variables aren’t changed.

– averageOf=<number>[,interval=<seconds>]] — Specifies averaging of the readback
values, giving the number of readings to average and the interval in seconds between the
readbacks.

40

– testValues=<file> — An SDDS file containing minimum and maximum values of
PV’s specifying a range outside of which the feedforward is temporarily suspended. The
contents of the file are described above.

– ezcaTiming[=<timeout>,<retries>] — Sets EZCA timeout and retry parameters.

– runControlPV=string=<string>[,pingTimeout=<value>]— Gives the name of a pro-
cess variable to use for workstation-independent process control via the Run Control
facility and the value of run control ping time out.

– runControlDescription=<string> — Gives a text description to write to the Run
Control record for process identification.

– CASecurityTest — Specifies that before writing values to EPICS, a test should be done
of the state of Channel Access security on the process variables, to see if the process is
permitted to write values.

• see also:

– sddsexperiment (2.9)

• author: M. Borland, ANL

41

2.11 sddsglitchlogger

• description: sddsglitchlogger reads values of process variables and writes them to a file at
a specified time interval when a trigger occurrs. An input file defines the process variables to
be monitored and/or the trigger parameters. An trigger file defines the the process variables
that act as triggers.

• example: The position readbacks of PMs in linac are monitored with the command below.

sddsglitchlogger SRvac.mon . -time=24,hours -interval=1,minute

“.” specifies the directory of the outputfile is current directory,the file name is generated as
related to the date. where the contents of the file SRvac.mon are

SDDS1

¶meter name=TriggerControlName type=string &end

¶meter name=MajorAlarm type=short &end

¶meter name=MinorAlarm, type=short &end

¶meter name=NoAlarm type=short &end

¶meter name=OutputRootname type=string &end

&column name=ControlName type=string &end

&column name=ReadbackName type=string &end

&column name=ReadbackUnits type=string &end

&data mode=ascii no_row_counts=1 &end

!page 1

soliday:PM1:X:positionM

0

0

1

PM

soliday:PM1:X:positionM soliday:PM1:X:positionM mm

soliday:PM1:Y:positionM soliday:PM1:Y:positionM mm

soliday:PM2:X:positionM soliday:PM2:X:positionM mm

...

• synopsis:

usage: sddsglitchlogger <input> <outputDirectory>|<outputRootname> [-triggerFile=<filename>

[-sampleInterval=<secs>] [-time=<real-value>[,<time-units>]

[-circularBuffer=[before=<number>,][after=<number>]]

[-holdoffTime=<seconds>] [-autoHoldoff]

[-inhibitPV=name=<name>[,pendIOTime=<seconds>][,waitTime=<seconds>]]

[-conditions=<filename>,{allMustPass | oneMustPass}]

[-verbose] [-watchInput] [-lockFile=<filename>[,verbose]]

Writes values of process variables or devices to a binary SDDS file.

• files:

– input file:

The input file is an SDDS file with a few data columns required:

42

∗ ControlName or Device — Required string column for the names of the process
variables or devices to be monitored. Both column names are equivalent.

∗ ReadbackName — Optional string column for the names of the data columns in the
output file. If absent, process variable or device name is used.

∗ ReadbackUnits — Optional string column for the units fields of the data columns
in the output file.If absent, units are null.

If triggerFile that gives the trigger information is not given, the input file should contain
following parameters:

∗ OutputRootname — Required string parameter for the root name of output file.
Different OutputRootmames go to different output files. If different pages have the
same OutputRootname, the columns defined in new pages are ignored. Only the
trigger defined in newer page is counted to the same output.

∗ TriggerControlName — Required string parameter for the name of process variable
that acts as trigger.

∗ MajorAlarm — Optional short parameter for alarm-based trigger. if nonzero, then
severity of MAJOR on TriggerControlName, results in a buffer dump.

∗ MinorAlarm — Optional short parameter for alarm-based trigger. if nonzero, then
severity of MINOR on TriggerControlName, results in a buffer dump.

∗ NoAlarm — Optional short parameter for alarm-based trigger. if nonzero, then
severity of NOALARM on TriggerControlName, results in a buffer dump.

∗ TransitionDirection — Optional short parameter for transition-based trigger.
required if TransitionThreshold parameter is defined.

· -1 transition of TriggerControlName from above threshold to below threshold.
results in buffer dump.

· 0 ignore transition-based triggers for this PV.

· 1 transition from below threshold to above threshold results in buffer dump.

∗ TransitionThreshold — Optional double parameter for transition-based trigger.
required if TransitionDirection parameter is defined. It defines the threshold of a
transition trigger.

∗ GlitchThreshold — Optional double parameter for glitch-based trigger.

· 0 ignore glitch-based triggers for this PV.

· >0 absolute glitch level.

· <0 -1*(fractional glitch level).

∗ GlitchBaselineSamples — Optional long parameter for glitch-based trigger. It
defines number of samples to average to get the baseline value for glitch determina-
tion. A glitch occurs when newReading is different from the baseline by more than
GlitchThreshold or (if GlitchThreshold¡0) by —GlitchThreshold*baseline—.

∗ GlitchBaselineAutoReset — Optional short parameter for glitch-based trigger.
Normally (if there is no glitch) the baseline is updated at each step using baseline
-¿ (baseline*samples+newReading)/(samples+1). After a glitch, one may want to
do something different.

· 1 After a glitch, the baseline is reassigned to its current value.

· 0 The pre-glitch baseline is retained.

– trigger file:

43

The trigger file is an SDDS file with following columns, the meaning of these columns
are the same as the parameters defined in input file, which are replaced by a trigger file:

∗ TriggerControlName — Required string column for the names of the process vari-
ables that act as triggers.

∗ MajorAlarm — Optional short column.

∗ MinorAlarm — Optional short column.

∗ NoAlarm — Optional short column.

∗ TransitionThreshold — Optional double column. (required for transition trigger
exists)

∗ TransitionDirection — Optional short column.(required for transition trigger ex-
ists)

∗ GlitchThreshold — Optional double column.(required for glitch trigger exists)

∗ GlitchBaselineSamples — Optional long column.

∗ GlitchBaselineAutoReset — Optional short column

– conditions file:

The conditions file is an optional input file specified on the command line which lists
conditions that must be satisfied at each time step before the data can be logged.

The file is like the main input file, but has numerical columns LowerLimit and UpperLimit.
The minimal column set is ControlName, which contain the PV names, and the two lim-
its columns above. Depending on comand line options, when any or all PV readback
from this file is outstide the range defined by the corresponding data from LowerLimit

and UpperLimit, none of the data of the input file PVs are recorded. When this situ-
ation occurs for a long period of time, the size of the output file doesn’t grow, and it
may appear that the monitoring process has somehow stopped. It is possible to check
the program activity with the touch sub-option which causes the monitoring program
to touch the output file at every step.

– output file:

If trigger file is not given, the output file name is: outputDirectory/OutputRootname-
string here, there may be many output files depends how many pages and how many
different OutputRootnames the input file has. If trigger file is given, the outputDirectory
given in command line is actually the OutputRootname, the output file name is now
(only one output in this case): outputDirectory-string In above, both string is generated
by MakeDailyGenerationFilename().

The output file contains one data column for each process variables named in the input
file. Time columns and other miscellaneous columns are defined:

∗ Time — Double column of time since start of epoch. This time data can be used by
the plotting program sddsplot to make the best coice of time unit conversions for
time axis labeling.

∗ TimeOfDay — Float column of system time in units of hours. The time does not
wrap around at 24 hours.

∗ DayOfMonth — Float column of system time in units of days. The day does not
wrap around at the month boundary.

∗ Step — Long column for step number.

∗ CAerrors — Long column for number of channel access errors at each reading step.

44

Many time-related parameters are defined in the output file:

∗ TimeStamp — String parameter for time stamp for file.

∗ PageTimeStamp — String parameter for time stamp for each page. When data
is appended to an existing file, the new data is written to a new page. The
PageTimeStamp value for the new page is the creation date of the new page. The
TimeStamp value for the new page is the creation date of the very first page.

∗ StartTime — Double parameter for start time from the C time call cast to type
double.

∗ YearStartTime — Double parameter for start time of present year from the C time
call cast to type double.

∗ StartYear — Short parameter for the year when the file was started.

∗ StartJulianDay — Short parameter for the day when the file was started.

∗ StartMonth — Short parameter for the month when the file was started.

∗ StartDayOfMonth— Short parameter for the day of month when the file was started.

∗ StartHour — Short parameter for the hour when the file was started.

• switches:

– -triggerFile — specifies the name of trigger file.

– -lockFile — specifies the name of lock file. When this option is given, sddsglitchlogger
uses the named file to prevent running multiple versions of the program. If the named
file exists and is locked, the program exits. If it does not exist or is not locked, it is
created and locked.

– -sampleInterval=<real-value>[,<time-units>]— Specifies the interval between read-
ings. The time interval is implemented with a call to usleep between calls to the control
system. Because the calls to the control system may take up a significant amount of
time, the average effective time interval may be longer than specified.

– -time=<real-value>[,<time-units>] — Total time for monitoring. Valid time units
are seconds, minutes, hours, and days. The completion time may be longer, because the
time interval in not garanteed.

– -enforceTimeLimit — Enforces the time limit given with the -time option.

– -circularBuffer — Set how many samples to keep before and after the triggering
event.

– -holdoffTime — Set the number of seconds to wait after a trigger or alarm before
accepting new triggers or alarms.

– -autoHoldoff — Sets holdoff time so that the after-trigger samples are guaranteed to
be collected before a new trigger or alarm is accepted.

– -verbose — Prints out a message when data is taken.

– -pendIOtime=<value> — sets the maximum time to wait for return of each value.

– -inhibitPV — Checks this PV prior to each sample. If the value is nonzero, then data
collection is inhibited. None of the conditions-related or other PVs are polled.

– -watchInput – If it is given, then the programs checks the input file to see if it is modifed.
If the inputfile is modified, then read the input files again and start the logging.

45

– -conditions=<filename>,{allMustPass | oneMustPass}[,touchOutput][,retakeStep]

— Names an SDDS file containing PVs to read and limits on each PV that must be sat-
isfied for data to be taken and logged. The file is like the main input file, but has
numerical columns LowerLimit and UpperLimit.

One of allMustPass or oneMustPass must be specified. It would make sense to use
allMustPass in most monitoring applications. If touchOutput is present, then the
output file is touched, even if no data is written. This way, one can determine by the
time stamp of the file whether the monitoring job is still alive when the conditions fail
for a long period of time. If retakeStep is present, then the value of Step in the output
file is not incremented until the conditions pass, and data is written to the output file.

• see also:

– sddsmonitor (2.14)

• author: Hairong Shang, ANL

46

2.12 sddslogger

• description: sddslogger reads values of process variables and writes them to a file at a
specified time interval. One or more input files defines the process variables to be monitored.

• example: The pressure readbacks of storage ring ion pumps and the stored current are
monitored with the command below.

sddslogger SRvac.mon SRvac.sdds -time=24,hours -sampleInterval=1,minute

where the contents of the file SRvac.mon are

SDDS1

&description &end

&column

name = ControlName, type = string, &end

&column

name = ControlType, type = string, &end

&column

name = ReadbackUnits, type = string, &end

&column

name = ReadbackName, type = string, &end

&data

mode = ascii, no_row_counts=1 &end

! page number 1

S35DCCT:currentCC pv mA S35DCCT

VM:01:3IP1.VAL pv Torr VM:01:3IP1

VM:01:2IP2.VAL pv Torr VM:01:2IP2

VM:01:2IP3.VAL pv Torr VM:01:2IP3

...

• synopsis:

usage: sddslogger <SDDSinputfile1> <SDDSoutputfile1> <SDDSinputfile2> <SDDSoutputfile2>...

[-generations[=digits=<integer>][,delimiter=<string>][,rowlimit=<number>][,timelimit=<s

[-sampleInterval=<real-value>[,<time-units>]

[-logInterval=<integer-value>

[-steps=<integer-value> | -time=<real-value>[,<time-units>]]

[-enforceTimeLimit] [-offsetTimeOfDay]

[-verbose] [-singleshot{=noprompt | stdout}]

[-precision={single|double}]

-onerror={usezero|skiprow|exit} [-pendIOtime=<value>]

[-conditions=<filename>,{allMustPass | oneMustPass}[,touchOutput][,retakeStep]]

Writes values of process variables or devices to a binary SDDS file.

• files:

– input file(s):

The input files are SDDS files with a few data columns required:

47

∗ ControlName or Device — Required string column for the names of the process
variables or devices to be monitored. Both column names are equivalent.

∗ ReadbackUnits — Required string column for the units fields of the data columns
in the output file.

∗ ReadbackName — Optional string column for the names of the data columns in the
output file. If absent, process variable or device name is used.

∗ Message — Optional string column for the device read message. If a row entry in
column ControlName is a process variable, then the corresponding entry in Message

should be a null string.

∗ ScaleFactor — Optional double column for a factor with which to multiply values
of the readback in the output file.

∗ Average — Optional long column. If value is non-zero the process variable will have
its average value logged. Otherwise it will log the most recent value. values of the
readback in the output file.

∗ DoublePrecision — Optional long column. If value is non-zero the process variable
will be logged as a double-precision number. Otherwise it will be logged as a single-
precision number.

– conditions file:

The conditions file is an optional input file specified on the command line which lists
conditions that must be satisfied at each time step before the data can be logged.

The file is like the main input file, but has numerical columns LowerLimit and UpperLimit.
The minimal column set is ControlName, which contain the PV names, and the two lim-
its columns above. Depending on comand line options, when any or all PV readback
from this file is outstide the range defined by the corresponding data from LowerLimit

and UpperLimit, none of the data of the PVs in the input files are recorded. When this
situation occurs for a long period of time, the size of the output files doesn’t change,
and it may appear that the monitoring process has somehow stopped. It is possible to
check the program activity with the touch sub-option which causes the logging program
to touch the output file at every step.

– output file(s):

The output files contains one data column for each process variable named in the corre-
sponding input file. By default, the data type is float (single precision). Time columns
and other miscellaneous columns are defined:

∗ Time — Double column of time since start of epoch. This time data can be used by
the plotting program sddsplot to make the best coice of time unit conversions for
time axis labeling.

∗ TimeOfDay — Float column of system time in units of hours. The time does not
wrap around at 24 hours.

∗ DayOfMonth — Float column of system time in units of days. The day does not
wrap around at the month boundary.

∗ Step — Long column for step number.

∗ CAerrors — Long column for number of channel access errors at each reading step.

Many time-related parameters are defined in the output file:

∗ TimeStamp — String parameter for time stamp for file.

48

∗ PageTimeStamp — String parameter for time stamp for each page. When data
is appended to an existing file, the new data is written to a new page. The
PageTimeStamp value for the new page is the creation date of the new page. The
TimeStamp value for the new page is the creation date of the very first page.

∗ StartTime — Double parameter for start time from the C time call cast to type
double.

∗ YearStartTime — Double parameter for start time of present year from the C time
call cast to type double.

∗ StartYear — Short parameter for the year when the file was started.

∗ StartJulianDay — Short parameter for the day when the file was started.

∗ StartMonth — Short parameter for the month when the file was started.

∗ StartDayOfMonth— Short parameter for the day of month when the file was started.

∗ StartHour — Short parameter for the hour when the file was started.

• switches:

– -generations[=digits=<integer>][,delimiter=<string>] — The output is sent to
the file <SDDSoutputfile>-<N>, where <N> is the smallest positive integer such that the
file does not already exist. By default, four digits are used for formating <N>, so that
the first generation number is 0001.

– -sampleInterval=<real-value>[,<time-units>]— Specifies the interval between read-
ings. The time interval is implemented with a call to usleep between calls to the control
system. Because the calls to the control system may take up a significant amount of
time, the average effective time interval may be longer than specified.

– -logInterval=<interval> — Specifies the number of sampling intervals to average
before writing to the output file.

– -steps=<integer-value> — Number of readbacks for each process variable before nor-
mal exiting.

– -time=<real-value>[,<time-units>] — Total time for monitoring. Valid time units
are seconds, minutes, hours, and days. The program calculates the number of steps by
dividing this time by the interval. The completion time may be longer, because the time
interval in not garanteed.

– -enforceTimeLimit — Enforces the time limit given even if the expected number of
samples has not been taken.

– -offsetTimeOfDay — Adjusts the starting TimeOfDay value so that it corresponds to
the day for which the bulk of the data is taken. Hence, a 26 hour job started at 11pm
would have an initial time of day of -1 hour and a final time of day of 25 hours.

– -verbose — Prints out a message when data is taken.

– -singleShot[=noprompt] — a single read is prompted at the terminal and initiated by
a <cr> key press. The time interval is disabled. With noprompt present, no prompt is
written to the terminal, but a <cr> is still expected. Typing “q” or “Q” terminates the
monitoring.

– -onerror={usezero|skiprow|exit}— Selects action taken when a channel access error
occurs. The default is using zero (usezero) for the value of the process variable with the
channel access error, and resuming execution. The second option (skiprow) is to simply

49

throw away all the data for that read step, and resume execution. the third option is to
exit the program.

– -pendIOtime=<value> — Sets the maximum time to wait for connection to each PV.

– -conditions=<filename>,{allMustPass | oneMustPass}[,touchOutput][,retakeStep]

— Names an SDDS file containing PVs to read and limits on each PV that must be sat-
isfied for data to be taken and logged. The file is like the main input file, but has
numerical columns LowerLimit and UpperLimit.

One of allMustPass or oneMustPass must be specified. It would make sense to use
allMustPass in most monitoring applications. If touchOutput is present, then the
output file is touched, even if no data is written. This way, one can determine by the
time stamp of the file whether the monitoring job is still alive when the conditions fail
for a long period of time. If retakeStep is present, then the value of Step in the output
file is not incremented until the conditions pass, and data is written to the output file.

• see also:

– sddsmonitor (2.14)

– sddsvmonitor (2.20)

– sddswmonitor (2.21)

– sddssnapshot (2.17)

• author: R. Soliday, M. Borland, H. Shang ANL

50

2.13 sddslogonchange

• description: sddslogonchange records only the values of process variables that change.
This reduces the output file size if process variables do not change often.

• example: Process variable setpoints from the storage ring are monitored with the command
below.

sddslogonchange SR.loc SR.sdds -loginitial -watchInput -connectTimeout=120

where the contents of the file SR.loc are

SDDS1

&column name=ControlName, type=string, &end

&column name=Tolerance, format_string=%g, type=double, &end

&column name=Description, type=string, &end

&data mode = ascii, no_row_counts=1 &end

! page number 1

S1A:H1:CurrentAI.AOFF 0.0 ""

S1A:H2:CurrentAI.AOFF 0.0 ""

S1A:H3:CurrentAI.AOFF 0.0 ""

...

• synopsis:

usage: sddslogonchange <input> <output>

[-timeDuration=<realValue>[,<time-units>]]

[-append[=recover]]

[-eraseFile]

[-generations[=digits=<integer>][,delimiter=<string>]]

[-dailyFiles]

[-pendEventTime=<seconds>]

[-durations]

[-connectTimeout=<seconds>]

[-explicit[=only]]

[-verbose]

[-comment=<parameterName>,<text>]

[-requireChange[=severity][,status][,both]]

[-inhibitPV=name=<name>[,pendIOTime=<seconds>][,waitTime=<seconds>]]

[-includeTimeOfDay]

[-offsetTimeOfDay]

[-logInitialValues]

[-logAlarms]

[-watchInput]

Logs data for the process variables named in the ControlName

column of <input> to an SDDS file <output>.

• files:

51

– input file:

The input file is an SDDS file with only one data column required:

∗ ControlName — Required string column for the names of the process variables or
devices to be monitored.

∗ ReadbackName — Optional string column.

∗ ReadbackUnits — Optional string column.

∗ Description — Optional string column.

∗ RelatedControlName — Optional string column.

∗ Tolerance — Optional numeric column which contains a tolerance value to avoid
logging small changes.

– output file:

The output file contains parameters, arrays, and columns.

∗ Parameters

∗ InputFile — sddslogonchange input file.

∗ TimeStamp — Time stamp for file.

∗ PageTimeStamp — Time stamp for page.

∗ StartTime — Start time.

∗ YearStartTime

∗ StartYear

∗ StartJulianDay

∗ StartMonth

∗ StartDayOfMonth

∗ StartHour

∗ Arrays

∗ ControlName — Control names of process variables

∗ ReadbackName — Optional readback names of process variables

∗ ReadbackUnits — Optional units of process variables

∗ AlarmStatusString — Optional

∗ AlarmSeverityString — Optional

∗ DescriptionString — Optional

∗ RelatedControlName — Optional

∗ Columns

∗ ControlNameIndex — Index of the ControlName array.

∗ Value — Value of the process variable.

∗ Time — Time stamp of the change in value.

∗ PreviousRow — Previous row with an identical ControlNameIndex value.

∗ AlarmStatusIndex — Optional

∗ AlarmSeverityIndex — Optional

52

∗ Duration — Optional

∗ RelatedValueString — Optional

∗ ControlName — Optional

∗ AlarmStatus — Optional

∗ AlarmSeverity — Optional

∗ Description — Optional

∗ RelatedControlName — Optional

• switches:

– -timeDuration=<realValue>[,<time-units>] — Specifies time duration for logging.
The default time units are seconds; you may also specify days, hours, or minutes.

– -offsetTimeOfDay — Adjusts the starting TimeOfDay value so that it corresponds to
the day for which the bulk of the data is taken. Hence, a 26 hour job started at 11pm
would have initial time of day of -1 hour and final time of day of 25 hours.

– -append[=recover] — Specifies appending to the file ¡output¿ if it exists already. If
the recover qualifier is given, recovery of a corrupted file is attempted using sddsconvert,
at the risk of loss of some of the data already in the file.

– -eraseFile — Specifies erasing the file ¡output¿ if it exists already.

– -generations[=digits=<integer>][,delimiter=<string>]— Specifies use of file gen-
erations. The output is sent to the file ¡output¿-¡N¿, where ¡N¿ is the smallest positive
integer such that the file does not already exist. By default, four digits are used for
formating ¡N¿, so that the first generation number is 0001.

– -dailyFiles — The output is sent to the file ¡output¿-YYYY-JJJ-MMDD.¡N¿, where
YYYY=year, JJJ=Julian day, and MMDD=month+day. A new file is started after
midnight.

– -pendEventTime=<seconds> — Specifies the CA pend event time, in seconds. The
default is 10.

– -durations — Specifies including state duration and previous row reference data in
output.

– -connectTimeout=<seconds> — Specifies maximum time in seconds to wait for a con-
nection before issuing an error message. 60 is the default.

– -explicit[=only] — Specifies that explicit columns with control name, alarm status,
and alarm severity strings be output in addition to the integer codes. If the ”only”
qualifier is given, the integer codes are omitted from the output.

– -verbose — Specifies printing of possibly useful data to the standard output.

– -comment=<parameterName>,<text>— Gives the parameter name for a comment to be
placed in the SDDS output file, along with the text to be placed in the file.

– -requireChange[=severity][,status][,both] — Specifies that either severity, sta-
tus, or both must change before an event is logged. The default behavior is to log an
event whenever a callback occurs, which means either severity or status has changed.

– -inhibitPV=name=<name>[,pendIOTime=<seconds>][,waitTime=<seconds>]— Checks
this PV periodically. If nonzero, then data collection is aborted.

• see also:

53

– sddslogger (2.12)

– sddssnapshot (2.17)

• author: R. Soliday, ANL

54

2.14 sddsmonitor

• description: sddsmonitor reads values of process variables and writes them to a file at a
specified time interval. An input file defines the process variables to be monitored.

• example: The pressure readbacks of storage ring ion pumps and the stored current are
monitored with the command below.

sddsmonitor SRvac.mon SRvac.sdds -time=24,hours -interval=1,minute

where the contents of the file SRvac.mon are

SDDS1

&description &end

&column

name = ControlName, type = string, &end

&column

name = ControlType, type = string, &end

&column

name = ReadbackUnits, type = string, &end

&column

name = ReadbackName, type = string, &end

&data

mode = ascii, no_row_counts=1 &end

! page number 1

S35DCCT:currentCC pv mA S35DCCT

VM:01:3IP1.VAL pv Torr VM:01:3IP1

VM:01:2IP2.VAL pv Torr VM:01:2IP2

VM:01:2IP3.VAL pv Torr VM:01:2IP3

...

• synopsis:

usage: sddsmonitor <SDDSinputfile> <SDDSoutputfile>

[-erase | -append[=recover] | -generations[=digits=<integer>][,delimiter=<string>]]

[-steps=<integer-value> | -time=<real-value>[,<time-units>]]

[-interval=<real-value>[,<time-units>]] [-updateinterval=<integer-value>]

[-verbose] [-singleShot[=noprompt] [-precision={single|double}]

[-oncaerror={usezero|skiprow|exit}] [-pendIOtime=<value>]

[-ezcaTiming[=<timeout>,<retries>]]

[-glitch=<controlname>[,message=<string>]{,delta=<value>|,fraction=<value>}\

[,before=<number>][,after=<number>][,baseline=<number>][,holdoff=<seconds>]]

[-trigger=<controlName>,level=<value>[,message=<string>][,slope={+ | -}]\

[,before=<number>][,after=<number>][,holdoff=<seconds>][,autoArm]]

[-conditions=<filename>,{allMustPass | oneMustPass}[,touchOutput][,retakeStep]]

[-noezca] [-comment=<parameterName>,<text>]

[-getUnits={force | ifBlank | ifNoneGiven}]\n\

Writes values of process variables or devices to a binary SDDS file.

55

• files:

– input file:

The input file is an SDDS file with a few data columns required:

∗ ControlName or Device — Required string column for the names of the process
variables or devices to be monitored. Both column names are equivalent.

∗ Message — Optional string column for the device read message. If a row entry in
column ControlName is a process variable, then the corresponding entry in Message

should be a null string.

∗ ReadbackName — Optional string column for the names of the data columns in the
output file. If absent, process variable or device name is used.

∗ ReadbackUnits — Optional string column for the units fields of the data columns
in the output file.If absent, units are null.

∗ ScaleFactor — Optional double column for a factor with which to multiply values
of the readback in the output file.

– conditions file:

The conditions file is an optional input file specified on the command line which lists
conditions that must be satisfied at each time step before the data can be logged.

The file is like the main input file, but has numerical columns LowerLimit and UpperLimit.
The minimal column set is ControlName, which contain the PV names, and the two lim-
its columns above. Depending on comand line options, when any or all PV readback
from this file is outstide the range defined by the corresponding data from LowerLimit

and UpperLimit, none of the data of the input file PVs are recorded. When this situ-
ation occurs for a long period of time, the size of the output file doesn’t grow, and it
may appear that the monitoring process has somehow stopped. It is possible to check
the program activity with the touch sub-option which causes the monitoring program
to touch the output file at every step.

– output file:

The output file contains one data column for each process variables named in the input
file. By default, the data type is float (single precision). Time columns and other
miscellaneous columns are defined:

∗ Time — Double column of time since start of epoch. This time data can be used by
the plotting program sddsplot to make the best coice of time unit conversions for
time axis labeling.

∗ TimeOfDay — Float column of system time in units of hours. The time does not
wrap around at 24 hours.

∗ DayOfMonth — Float column of system time in units of days. The day does not
wrap around at the month boundary.

∗ Step — Long column for step number.

∗ CAerrors — Long column for number of channel access errors at each reading step.

Many time-related parameters are defined in the output file:

∗ TimeStamp — String parameter for time stamp for file.

∗ PageTimeStamp — String parameter for time stamp for each page. When data
is appended to an existing file, the new data is written to a new page. The
PageTimeStamp value for the new page is the creation date of the new page. The
TimeStamp value for the new page is the creation date of the very first page.

56

∗ StartTime — Double parameter for start time from the C time call cast to type
double.

∗ YearStartTime — Double parameter for start time of present year from the C time
call cast to type double.

∗ StartYear — Short parameter for the year when the file was started.

∗ StartJulianDay — Short parameter for the day when the file was started.

∗ StartMonth — Short parameter for the month when the file was started.

∗ StartDayOfMonth— Short parameter for the day of month when the file was started.

∗ StartHour — Short parameter for the hour when the file was started.

• switches:

– -erase — If the output file already exists, then it will be overwritten by sddsmonitor.

– -append[=recover] — If the output file already exists, then append the new readings.
The output file must have previously been generated by sddsmonitor using the same
information in the input files. The recover option allows an attempt to recover the
data using sddsconvert if the input file is somehow corrupted.

– -generations[=digits=<integer>][,delimiter=<string>] — The output is sent to
the file <SDDSoutputfile>-<N>, where <N> is the smallest positive integer such that the
file does not already exist. By default, four digits are used for formating <N>, so that
the first generation number is 0001.

– -interval=<real-value>[,<time-units>] — Specifies the interval between readings.
The time interval is implemented with a call to usleep between calls to the control system.
Because the calls to the control system may take up a significant amount of time, the
average effective time interval may be longer than specified.

– -steps=<integer-value> — Number of readbacks for each process variable before nor-
mal exiting.

– -time=<real-value>[,<time-units>] — Total time for monitoring. Valid time units
are seconds, minutes, hours, and days. The program calculates the number of steps by
dividing this time by the interval. The completion time may be longer, because the time
interval in not garanteed.

– -updateinterval — Obsolete.

– -verbose — Prints out a message when data is taken.

– -singleShot[=noprompt] — a single read is prompted at the terminal and initiated by
a <cr> key press. The time interval is disabled. With noprompt present, no prompt is
written to the terminal, but a <cr> is still expected. Typing “q” or “Q” terminates the
monitoring.

– -oncaerror={usezero|skiprow|exit} — Selects action taken when a channel access
error occurs. The default is using zero (usezero) for the value of the process variable
with the channel access error, and resuming execution. The second option (skiprow) is
to simply throw away all the data for that read step, and resume execution. the third
option is to exit the program.

– -pendIOtime=<value> — Obsolete.

– -ezcaTiming[=<timeout>,<retries>] — Sets EZCA timeout and retry parameters.

57

– -noezca — Obsolete.

– -glitch=<controlname>[,message=<string>],delta=<value>|,fraction=<value>

[,before=<number>][,after=<number>][,baseline=<number>][,holdoff=<seconds>]

— Writes a buffer of PV readback values whenever the glitch PV (<controlname>) or
device changes by some value. If <controlname> is a device, then the message field
should be specified. A glitch is triggered if the control variable changes by the values
of the delta or a fraction field with respect to an exponential average from baseline

number of readings. The before and after fields give the number of readings recorded
in a page before and after the glitch is triggered. Some buffers may be joined in one
large page if the triggering events occur close together. Option -oncaerror is ignored.

– -trigger=<controlName>,level=<value>[,message=<string>][,slope=+ | -]

[,before=<number>][,after=<number>][,holdoff=<seconds>][,autoArm] — Simi-
lar to glitch, except buffered data is recorded when the named PV exceeds the given
level with the given slope. This is analogous to an oscilloscope trigger.

– -conditions=<filename>,{allMustPass | oneMustPass}[,touchOutput][,retakeStep]

— Names an SDDS file containing PVs to read and limits on each PV that must be sat-
isfied for data to be taken and logged. The file is like the main input file, but has
numerical columns LowerLimit and UpperLimit.

One of allMustPass or oneMustPass must be specified. It would make sense to use
allMustPass in most monitoring applications. If touchOutput is present, then the
output file is touched, even if no data is written. This way, one can determine by the
time stamp of the file whether the monitoring job is still alive when the conditions fail
for a long period of time. If retakeStep is present, then the value of Step in the output
file is not incremented until the conditions pass, and data is written to the output file.

– -comment=<parameterName>,<text>— Gives the parameter name for a comment to be
placed in the SDDS output file, along with the text to be placed in the file.

– [-getUnits={force | ifBlank | ifNoneGiven}] — Gets the units of quantities from
EPICS. ’force’ means ignore the ReadbackUnits data in the input, if any. ’ifBlank’
means attempt to get units for any quantity that has a blank string given for units.
’ifNoneGiven’ (default) means get units for all quantities, but only if no ReadbackUnits
column is given in the file.

• see also:

– sddsvmonitor (2.20)

– sddswmonitor (2.21)

– sddssnapshot (2.17)

• author: L. Emery and M. Borland, ANL

58

2.15 sddsoptimize

• description: sddsoptimize optimizes the RMS of a set of readback process variables by
automatically varying setpoint process variables (or knobs composed of setpoint PVs), which
have a physical influence on the readback process variables, through simplex or 1dscan
method.

• example: The trajectory of the booster BPMs is controlled with this command:

sddsoptimize -measFile= booster.h.moni -varFile=vv -simplex=evaluations=50,divisions=12 \

-knobFiles=booster.cokn -verbose

where the contents of the file booster.h.moni are

SDDS1

&column

name = "ControlName", type = "string", &end

&column

name = "ReadbackName", type = "string", &end

&column

name = "ReadbackUnits", type = "string", &end

&data

mode = ascii, no_row_counts=1 &end

oag:B1C0P1:ms:x B1C0P1:ms:x mm

oag:B1C0P2:ms:x B1C0P2:ms:x mm

oag:B1C1P1:ms:x B1C1P1:ms:x mm

oag:B1C1P2:ms:x B1C1P2:ms:x mm

.......

the contents of the file vv are

SDDS1

¶meter name=PauseAfterChange, type=double, &end

&column name=ControlName, type=string, &end

&column name=LowerLimit, type=double, &end

&column name=UpperLimit, type=double, &end

&column name=InitialChange, type=double, &end

&data mode=ascii,no_row_counts=1,&end

oag:B1C1H:KickAO -2 2 2

oag:B1C2H:KickAO -2.500000000000000e+01 2.500000000000000e+01 2.000000000000000e-01

oag:B1C3H:KickAO -2.500000000000000e+01 2.500000000000000e+01 2.000000000000000e-01

B:h11cos -25 25 0.1

B:h12sin -25 25 0.1

B:h12cos -25 25 0.1

.....

the contents of the file booster.cokn are

59

SDDS1

¶meter name=ControlName, type=string, &end

¶meter name=KnobDescription, type=string, &end

¶meter name=Gain, type=double, &end

¶meter name=ControlType, type=string, &end

¶meter name=ControlUnits, type=string, &end

¶meter name=Filename, description="Name of file from which this page came", type=string,

¶meter name=NumberCombined, description="Number of files combined to make this file",

&column name=ControlName, type=string, &end

&column name=Weight, type=double, &end

&data mode=asc_ii,no_row_counts=1. &end

....

....

!.page 2

B:h11cos

h plane 11th harm. cos (1 mrad/click)

1.0

pv

rad

11HarmCosineh.cokn

8

oag:B1C0H:KickAO 0.99997256549446789

oag:B1C1H:KickAO -0.21202791415796657

oag:B1C2H:KickAO -0.93188756664225914

.....

.....

• synopsis:

usage: sddsoptimize -measFile=<filename> -measScript=<script>

[-varScript=<scriptname>]

-varFile=<filename> -knobFiles=<filename1> , <filename2>,...

[-simplex=[restarts=<nRestarts>][,cycles=<nCycles>,]

[evaluations=<nEvals>,][no1dscans][,divisions=<int>]]

[-logFile=<filename>] [-verbose] [-tolerance=<value>] [-maximize]

[-1dscan=[divisions=<value>,][cycles=<number>][,evaluations=<value>][,refresh]]

[-target=<value>] [-testValues=file=<filename>[,limit=<count>]]

[-runControlPV={string=<string>|parameter=<string>},pingTimeout=<value>,

pingInterval=<value>

Perform optimization on APS control system process variables using simplex or 1dscan method.

• files:

– variable input file:

The variable input file is an SDDS file with one string column: ControlName, which
is required and gives the list of control correctors (process variables or knobs). It
also contains three double columns: LowerLimit, UpperLimit, IntialChange and Ini-
tialValue. InitialValue column is optional. Others are required. InitialChange column

60

specifies the initial changes to the correctors. Variable input file has one parameter
–PauseBetweenReadings(double), which sets the waiting time in seconds between two
settings of the correctors.

– measurement file:

This file specifies the measurement to be optimized. It has four columns:

∗ ControlName — Required string column. Gives the list of process variables to be
controlled.

∗ ReadbackName — string, optional.

∗ ReadbackUnits — string, optional.

∗ Weight – double, optional. Defines the weight of each PV contributed to RMS.

It has three parameters:

∗ Tolerance — double, sets the converging limit.

∗ NumberToAverage — long, sets number of average for measurement PVs.

∗ PauseBetweenReadings — double, sets interval between two readings.

– knob file:

To make sddsoptimize more robust, one can implement optimizaion on knobs, that are
composed of set point process varibles. The process variables that a knob contains are
given in knob file, which contain following parameters and columns:

∗ ControlName — Required string paramter. The name of knob, which acts as a
corrector as other PVs do.

∗ ControlName — Required string column. The names of PVs the knob specified
above contains.

∗ Wieght — Required double columns. Defines the weights of PVs that compose the
knob.

∗ Gain —Optional double paramter. The value of each PV the knob contains is
value(PV)=value(knob)*Gain*Weigth(PV). When it is not given, set it to 1.

∗ ControlType — Optional string paramter. Specifies the control type.

∗ ControlUnits — Optional string parameter. Specifies the units of control PVs.

∗ KnobDescription – Optional string parameter.

∗ Filename— Optional string parameter. The name of the file where this knob comes
from.

∗ Numbercombined — Optional long parameter. The number of files combined. The
resulted knob file contains all the information of the files combined. The content of
each page is from the combined file specified in filename parameter.

– output log file:

The output file contains one data column for each process variables defined in the variable
input file. By default, the data type is double. One row is written at every evaluation.
Also two more columns and two parameters are defined:

∗ EvalIndex — Long Column. The index of evaluations.

∗ currentValue — Double column. The RMS value of measurement at each evalu-
aion.

∗ variableFile — String parameter. The name of input variable file.

∗ measurementFile — String parameter. The name of input measurement file.

61

• switches:

– -varFile — required, see above. Data in ControlNamemay be valid process variable
names or knobs defined in knob files.

– -measFile —specifies the name of measurement file. See above about its content.

– -knobFiles —specifies list of knob files, which contain the knob correctors given in
varFile. See above about its content.

– -measScript=<measScript>— user given script for measuring PVs. Either -measScript
or -measFile is given for measurement.
tt¡measScript¿ is an executable script which is called by optimizer and outputs a value
to the stand outputs. This value is the evaluation value and read by the optimizer.

– -varScript=<varScript> — user given script for setting setpoint PVs or tags. If both
-measScript and -varScript are given, there are no obvious ioc calls. The calling syntax of
<varScript> is: <varScript> -tagList <tagList> -valueList <valueList> where
<varScript> is an executable command, <tagList> is a list of setpoints or tag names
supplied by the varFile and <valueList> is a list of values for setting the setpoints or
tags. These values are calculated by optimizer in each evaluation.

– -simplex — Give parameters of the simplex optimization. Each start or restart allows
¡nCycles¿ cycles with up to ¡nEvals¿ evaluations of the function. Defaults are 1 restarts,
1 cycles, and 100 evaluations (iterations). If no1dscan is given, then turn off the 1D
scan function in simplex. Divisions gives the parameter of maximum divisions used in
simplex. If repeat is given, then read the previous better point again to keep track with
the noise. If there is not much noise, it should be turned off to have a better performance.

– -1dscan — Give parameters of one dimensional scan optimization. Cycles gives the max.
number of cycles (i.e. loops) of 1dscan and with an maximum number of evaluations.
Divisons is the max. number of division applied in 1dscan. Either 1dscan or simplex
method is used for optimize. repeat: read the measurement again if the variable PVs
are set back to their previous values to keep track with noise.

– -verbose — Specifies printing of possibly useful data to the standard output.

– -target — the target value for RMS of measurement PV (or PVs).

– -tolerance — tolerance should be given if measScript is used, otherwise, a default value
of 0.001 is set to tolerance.

– -maximize — If maximize option is given, sddsoptimize maximizes measurement by
varying control correctors. Otherwise, it minimizes the measurement.

– -runControlPV – specifies the runControl PV record.

– -runControlDescription – specifies a string parameter whose value is a runControl
PV description record.

– -testValues – ¡filename¿ is name of an sdds format file containing minimum and max-
imum values of PV’s specifying a range outside of which the feedback is temporarily
suspended. Column names are ControlName, MinimumValue, MaximumValue. limit
specifies the maximum times of testing when test fails.

• see also:

– sddsexperiment (2.9)

• author: H. Shang, ANL

62

2.16 sddspvtest

• description: sddspvtest tests the process variable given by the inputfile are out-of-range
or not and sets the number of out-of-range process variables to a control PV.

• example:

sddspvtest linac.sdds -time=20 -runControlPV={string=shang:ControlLawRC,pingTimeout=4}\

-runControlDescription=string=hi

where the contents of the file linac.sdds are

SDDS1

&description text="Namecapture BURT Request File", contents="BURT Request", &end

&column name=ControlName, type=string, &end

&column name=MaximumValue, type=double, &end

&column name=MinimumValue, type=double, &end

&data mode=ascii, &end

! page number 1

linac

10

soliday:PM1:X:positionM 1.000000000000000e+00 -1.000000000000000e+00

soliday:PM1:Y:positionM 1.000000000000000e+00 -1.000000000000000e+00

soliday:PM2:X:positionM 1.000000000000000e+00 -1.000000000000000e+00

soliday:PM2:Y:positionM 1.000000000000000e+00 -1.000000000000000e+00

soliday:PM3:X:positionM 1.000000000000000e+00 -1.000000000000000e+00

soliday:PM3:Y:positionM 1.000000000000000e+00 -1.000000000000000e+00

soliday:PM4:X:positionM 1.000000000000000e+00 -1.000000000000000e+00

soliday:PM4:Y:positionM 1.000000000000000e+00 -1.000000000000000e+00

soliday:PM5:X:positionM 1.000000000000000e+00 -1.000000000000000e+00

soliday:PM5:Y:positionM 1.000000000000000e+00 -1.000000000000000e+00

.......

• synopsis:

usage: sddspvtest <inputFile> [-pvOutput=<pvName>]

[-time=<timeToRun>,<timeUnits>] [-interval=<timeInterval>,<timeUnits>]

[-runControlPV={string=<string>|parameter=<string>},pingTimeout=<value>,

pingInterval=<value>]

[-runControlDescription={string=<string>|parameter=<string>}]

[-pendIOtime=<value>] [-verbose] [-testValues=<file>[,limit=<number>]]

• files:

– input file:

The variable input file is an SDDS file with one string column: ControlName, which
is required and gives the list of control correctors (process variables or knobs). It also
contains two double double columns: MaximumValue and MinimumValue, which are
also required. seconds between two settings of the correctors.

63

• switches:

– -pvOutput — optional. the output pv name for storing the testing results of PVs in the
input. If it is not given,the results are printed out.

– -time —required. Total time for testing process variable. Valid time units are sec-
onds,minutes,hours, or days.

– -interval —optional. Desired time interval for testing, the units are same as time.

– -runControlPV — specifies the runControl PV record. string—parameter is required,
pingInterval and pingTimeout are optional.

– -runControlDescription —specifies a string parameter whose value is a runControl
PV description record.

– -verbose – print out messages.

– -pendIOtime – sets the maximum time to wait for return of each value.

– -testValues<file>,[limit=<number>] – file is sdds format file containing minimum
and maximum values of PV’s specifying a range outside of which the feedback is tem-
porarily suspended. Column names are ControlName, MinimumValue, MaximumValue.
Optional column names are SleepTime, ResetTime. limits is the maixum number of
failure times. The program will be terminated when the continuous failure times reaches
the limit.

• see also:

– sddscontrollaw (2.8)

• author: H. Shang, ANL

64

2.17 sddssnapshot

• description: sddssnapshot reads values of process variables and writes them to a file. An
input file lists the process variables to be read.

sddssnapshot differs from burtrb in that sddssnapshot may operate in a server mode in
which a new file is written to the named output file whenever the signal SIGUSR1 is received
by sddssnapshot. Another improvement over burtrb is that all data in the input file (even
those not needed by the program) are transfered to the output file. sddssnapshot is more
for data collection as opposed to backup and restore.

• example: The state of the APS storage ring is saved by writing values of process variables
listed in SR.req to the snapshot file SR.snp:

sddssnapshot SR.req SR.snp -nameOfData="Value"

where the contents of the file SR.req are

SDDS1

&column

name = ControlName, type = string, &end

&data

mode = ascii, &end

&data

mode = "ascii", no_row_counts=1 &end

S1A:Q1:CurrentAO

S1A:Q2:CurrentAO

...

• synopsis:

usage: sddssnapshot [-pipe[=input][,output]] [<input>] [<output>]

[-ezcaTiming=<timeout>,<retries>] [-unitsOfData=<string>] [-nameOfData=<string>]

[-serverMode=<pidFile>] [-average=<number>,<intervalInSec>]

Takes a snapshot of EPICS scalar process variables.

Requires the column "ControlName" with the process variable names.

For server mode, writes a new file to the given filename whenever

SIGUSR1 is received. Exits when SIGUSR2 is received.

• files:

– input file:

The input file is an SDDS file with at least one column:

∗ ControlName — Required string column for the process variable or device name.

– output file:

The output file contains all columns of the input file including those not needed by the
program plus a column named on the command line option -nameOfData. This column
is defined as a double type and contains the readback values. Optionally the units of that
readback column may be specified on the command line. Of course this option is useful

65

only if all the process variables have the same units, as in the case of recording orbit
values from all bpms. If the -average option is requested, then an additional double
column is created with the name of the readback column with the “StDev” appended to
it.

– pid file:

A process id file is created with option serverMode=<pidFile>. This file contains a
single number which is the pid number of the running sddssnapshot process.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -ezcaTiming=<timeout>,<retries> — Specifies tuning of ezca, the channel access in-
terface used by sddssnapshot.

– -nameOfData=<string> — Column name to be given to the data collected. Default
name is “Value”.

– -unitsOfData=<string> — Optional. Name given to the units field of the column
definition of the data to be collected. Default value is the null string.

– -serverMode=<pidFile> — Optional. Enables the server more. The file specified will
be created and contain the process number of the present sddssnapshot process. This
file is the mechanism through which the user will know to which process should the
SIGUSR1 be sent. To activate one snapshot write, the user can type the command
“kill -SIGUSR1 ‘cat <pidFile>‘”.

– -average=<number>,<intervalInSec> — Optional. On can specify the number of
readings to average and the number of seconds interval between readings.

• see also:

– burtrb (2.1)

– sddsmonitor (2.14)

• author: M. Borland, ANL

66

2.18 sddsstatmon

• description: sddsstatmon reads EPICS process variables, collects statistics, and writes
these statistics to an output file. The statistics are the mean, standrd deviation, mininum,
maximum, and sigma. An input file defines the process variables to be monitored.

• example: Statistics of the pressure readbacks of storage ring ion pumps and the stored
current for groups of 60 data points taken at 1 second interval are collected with the command
below.

sddsstatmon SRvac.mon SRvac.sdds -time=24,hours -interval=1,second \

-samplesPerStatistic=60

where the contents of the file SRvac.mon are

SDDS1

&description &end

&column

name = ControlName, type = string, &end

&column

name = ControlType, type = string, &end

&column

name = ReadbackUnits, type = string, &end

&column

name = ReadbackName, type = string, &end

&data

mode = ascii, no_row_counts=1 &end

! page number 1

S35DCCT:currentCC pv mA S35DCCT

VM:01:3IP1.VAL pv Torr VM:01:3IP1

VM:01:2IP2.VAL pv Torr VM:01:2IP2

VM:01:2IP3.VAL pv Torr VM:01:2IP3

...

• synopsis:

usage: sddsstatmon <input> <output>

[-erase | -generations[=digits=<integer>][,delimiter=<string>]]

[-steps=<integer-value> | -time=<real-value>[,<time-units>]]

[-interval=<real-value>[,<time-units>] | [-singleShot{=noprompt | stdout}]

[-samplesPerStatistic=<integer>]

[-verbose] [-precision={single|double}]

[-updateInterval=<integer>]

[-ezcaTiming[=<timeout>,<retries>]] [-noezca]

[-oncaerror={skip | exit | repeat}

[-comment=<parameterName>,<text>]

[-getUnits={force | ifBlank | ifNoneGiven}]

Writes values of process variables or devices to a binary SDDS file.

67

• files:

– input file:

The input file is an SDDS file with a few data columns required:

∗ ControlName or Device — Required string column for the names of the process
variables or devices to be monitored. Both column names are equivalent.

∗ Message — Optional string column for the device read message. If a row entry in
column ControlName is a process variable, then the corresponding entry in Message

should be a null string.

∗ ReadbackName — Optional string column for the names of the data columns in the
output file. If absent, process variable or device name is used.

∗ ReadbackUnits — Optional string column for the units fields of the data columns
in the output file.If absent, units are null.

∗ ScaleFactor — Optional double column for a factor with which to multiply values
of the readback in the output file.

– output file:

The output file contains one column per statistic per process variable monitored. The
five statistics are the mean, standard deviation, minimum value, maximum value, and
sigma. The corresponding column names are <name>Mean, <name>StDev, <name>Min,
<name>Max, and <name>Sigma, where <name> is the ReadbackName name value of the
process variable in the input file.

By default, the data type is float (single precision). Time columns and other miscella-
neous columns are defined:

∗ Time — Double column of time since start of epoch. This time data can be used by
the plotting program sddsplot to make the best coice of time unit conversions for
time axis labeling.

∗ TimeOfDay — Float column of system time in units of hours. The time does not
wrap around at 24 hours.

∗ DayOfMonth — Float column of system time in units of days. The day does not
wrap around at the month boundary.

∗ Step — Long column for step number.

∗ CAerrors — Long column for number of channel access errors at each reading step.

Many time-related parameters are defined in the output file:

∗ TimeStamp — String parameter for time stamp for file.

∗ PageTimeStamp — String parameter for time stamp for each page. When data
is appended to an existing file, the new data is written to a new page. The
PageTimeStamp value for the new page is the creation date of the new page. The
TimeStamp value for the new page is the creation date of the very first page.

∗ StartTime — Double parameter for start time from the C time call cast to type
double.

∗ YearStartTime — Double parameter for start time of present year from the C time
call cast to type double.

∗ StartYear — Short parameter for the year when the file was started.

∗ StartJulianDay — Short parameter for the day when the file was started.

68

∗ StartMonth — Short parameter for the month when the file was started.

∗ StartDayOfMonth— Short parameter for the day of month when the file was started.

∗ StartHour — Short parameter for the hour when the file was started.

• switches:

– -erase — If the output file already exists, then it will be overwritten by sddsstatmon.

– -generations[=digits=<integer>][,delimiter=<string>] — The output is sent to
the file <SDDSoutputfile>-<N>, where <N> is the smallest positive integer such that the
file does not already exist. By default, four digits are used for formating <N>, so that
the first generation number is 0001.

– -interval=<real-value>[,<time-units>] — Specifies the interval between readings.
The time interval is implemented with a call to usleep between calls to the control system.
Because the calls to the control system may take up a significant amount of time, the
average effective time interval may be longer than specified.

– -steps=<integer-value> — Number of readbacks for each process variable before nor-
mal exiting.

– -time=<real-value>[,<time-units>] — Total time for monitoring. Valid time units
are seconds, minutes, hours, and days. The program calculates the number of steps by
dividing this time by the interval. The completion time may be longer, because the time
interval in not garanteed.

– -singleShot[=noprompt] — a single read is prompted at the terminal and initiated by
a <cr> key press. The time interval is disabled. With noprompt present, no prompt is
written to the terminal, but a <cr> is still expected. Typing “q” or “Q” terminates the
monitoring.

– -samplesPerStatistic=<integer> — The number of samples to use for computing
each statistic. The default is 25.

– -verbose — Prints out a message when data is taken.

– -precision={single|double} — Selects teh data type for the statistics columns.

– -updateInterval=<integer> — Number of sample sets between each output file up-
date. The default is 1.

– -ezcaTiming[=<timeout>,<retries>] — Sets EZCA timeout and retry parameters.

– -noezca — Obsolete.

– -oncaerror={usezero|skiprow|exit} — Selects action taken when a channel access
error occurs. The default is using zero (usezero) for the value of the process variable
with the channel access error, and resuming execution. The second option (skiprow) is
to

• see also:

– sddsvmonitor (2.20)

– sddswmonitor (2.21)

– sddssnapshot (2.17)

• author: M. Borland, ANL

69

2.19 sddsvexperiment

• description: sddsvexperiment varies process variables and measures process variables, with
optional averaging. An input file of namelist commands gives the specific instructions. The
results are recorded in one or more SDDS files. This command differs from sddsexperiment

in that the measurement process variables are specified in two lists. The first list gives PV
“rootnames”. The second list gives suffixes to apply to each of the rootnames.

• example: The strength of a storage ring horizontal corrector (S1A:H1) is varied while
the readbacks at all horizontal beam position monitors are recorded. The output file is
S1A:H1.sdds.

sddsvexperiment S1A:H1.vexp S1A:H1.sdds

where the contents of the file S1A:H1.exp are

&rootname_list

filename=bpmRoot.sdds

&end

&suffix_list

filename=bpmSuffix.sdds

&end

&variable PV_name = "S1A:H1:CurrentAO",

parameter_name="S1A:H1"

! the corrector is varied in 5 steps from -1.0 to 1.0 amps.

index_number = 0, index_limit = 5,

initial_value = -1.0, final_value = 1.0,

&end

&execute

post_change_pause=4,

intermeasurement_pause=1

&end

where the line starting with a “!” is a comment.

The contents of the file bpmRoot.sdds is

SDDS1

&description &end

&column

name = "Rootname", type = "string", &end

&data

mode = "ascii", &end

360 ! number of rows

S1A:P1

S1A:P2

S1A:P3

S1A:P4

70

S1B:P5

S1B:P4

S1B:P3

S1B:P2

S1B:P1

S2A:P1

...

The contents of the file bpmSuffix.sdds is

SDDS1

&description &end

&column name=Suffix, type=string &end

&column name=NumberToAverage, type=long &end

&data mode=ascii, no_row_counts=1 &end

:ms:x 10

:ms:y 10

• synopsis:

usage: sddsvexperiment <inputFile> <outputFile>

[-suffixFile=<filename>] [-rootnameFile=<filename>]

[-echoinput] [-dryrun] [-summarize] [-verbose[=very]]

[-ezcaTiming=<timeout>,<retries>] [-describeInput]

• files:

– input file:

The input file consists of namelist commands that set up and execute the experiment.
The functions of the commands are described below.

∗ variable — specifies a process variable to vary, and the range and steps of the
variation. More than one variable command may be defined, so that many process
variables may vary at a time.

∗ rootname_list — specifies rootnames from which to generate process variable to
measure at each step during the experiment.

∗ suffix_list — specifies suffixes from which to generate process variable to measure
at each step during the experiment.

∗ execute — start executing the experiment. One group of variable, measurement
and execute commands may follow another in the same file for multiple experiments.

∗ erase — deletes previous variable or measurement setups.

∗ list_control_quantities— makes a cross-reference file for process variable names
and column names of the data file.

∗ system_call — specifies a system call (usually a script) to be executed either before
a measurement or before setting a process variable.

The following text describes all the namelist commands and their respective fields in
more detail. The command definition listing is of the form

71

&<command-name>

<variable-type> <variable-name> = <default-value>

.

.

.

&end

where the part <variable-type>, which doesn’t appear in an actual command, is used
to illustrate the valid type of the value. The three valid types are:

∗ double — for a double-precision type, used for most physical quantity variables,

∗ long — for an integer type, used for flags mostly.

∗ STRING — for a character string enclosed in double quotes.

An actual namelist in an input file should look like this:

&<command-name>

[<variable-name> = <value>,]

...

&end

In the namelist definition listings the square brackets denotes an optional component.
Not all variables need to be defined – the defaults may be sufficient. Those that do need
to be defined are noted in the detailed explanations. The only variables that don’t have
default values in general are string variables.

72

variable

∗ function: Specifies a process variable to vary, and the range and steps of the varia-
tion. Values of variables at each measurement step are written to an SDDS output
file. The readback-related fields are used to confirm that the physical device has
responded to a setpoint command at every step (and substep) within some toler-
ance. Readback is enabled when readback_attempts and readback_tolerance are
defined with non-zero positive values.
When an arbitrary sequence of setpoint values is required (say a binary sequence),
the values can be read in from an SDDS file specified by the values_file field. The
fields associated for the range and steps are ignored in this case.
With multiple variable commands, variables may be varied in a multi-dimensional
grid. For example, variables may be varied independently of each other, or some
groups of variables may vary together forming one axis of a multi-dimensional grid
(see item index_number).

&variable

STRING PV_name = NULL

STRING parameter_name = NULL

STRING symbol = NULL

STRING units = "unknown"

double initial_value = 0

double final_value = 0

long relative_to_original = 0

long index_limit = 0

long index_number = 0

STRING function = NULL

STRING values_file = NULL;

STRING values_file_column = NULL;

long substeps = 1

double substep_pause = 0

double range_multiplier = 1

STRING readback_name = NULL

double readback_pause = 0.1

double readback_tolerance = 0

long readback_attempts = 10

long reset_to_original = 1

&end

∗ PV_name — Required. Process variable name to vary.

∗ parameter_name — Required. Parameter name for the variable data recorded in
the output file.

∗ symbol — Optional. Symbol field for the above column definition of the variable
data.

∗ units — Optional. Units field for the above column definition of the variable data.

∗ initial_value — Required. The initial value of the process variable in the varia-
tion.

∗ final_value — Required. The final value of the process variable in the variation.

∗ index_limit — Number of steps in the variation. Measurements are taken at each
step.

73

∗ index_number — Required. The counter (or index) number with which the defined
variation is associated. In a sddsexperiment run, counters must be defined in an
increasing sequence starting from counter 0. That is, the first variable command
of the file must have index_number = 0. The second variable command must
have index_number = 0 or 1. In the former case, the two variables will move
together with the same number of steps according their respective initial_value

and final_value. In the latter case, the two variables will vary independently of
each other with possibly different number of steps in a 2-dimensional grid.
Counter number n is nested within counter n + 1. Therefore it might be efficient to
assign devices with slower response times to higher index_number counter.

∗ index_limit — Normally required. Number of steps in the variation. Measure-
ments are taken at each step. When more than one variable is associated with the
same counter, only the index_limit of the first variable definition for that counter
need to be defined. If index_limit is defined in variable commands of the same
index_number value, then the first index_limit remain in force.

∗ relative_to_original— Optional. If non-zero, then the variation range is defined
relative to the original process variable value (i.e. the value prior to running the
program).

∗ range_multiplier— Optional. Factor by which the range, final_value - initial_value,
is multiplied. New values of initial_value and final_value are calculated while
keeping the midpoint of the range the same.

∗ function — Optional. A string of rpn operations used to transform the range
specified by initial_value, final_value, and index_limit. For convenience, the
original value of the process variable, and the calculated grid value for the process
variable on the current step or substep are automatically pushed onto the the stack
before the function is executed. The calculated values are recorded in the output
file. The environment variable RPN_DEFNS is used to read a rpn definition file at the
start of the execution of sddsvexperiment.

∗ values_file — Optional. An SDDS data file containing setpoints for the variable.
This is useful is one has arbitrary setpoints values to apply. The values of the fields
initial_value, final_value, _substeps, range_multiplier and index_limit

are ignored.
One can have other variable namelists with the same index_number that don’t use
a file for the values. The default index_limit of the other variable will be set to
the number of setpoint in the values file. Thus the values in the file and the values
calculated for the other variable will vary together with the same number of steps.

∗ values_file_column— Required when values_file is specified. values_file_column
gives the column name of the setpoints data in file values_file.

∗ substeps — Optional. If greater than one, the steps are subdivided into this num-
ber. Measurements are not made at substeps. Substeps are useful when the physical
device associated with the process variable cannot reliably make steps as large as
those that might be defined with initial_value, final_value, and index_limit.

∗ substep_pause — Optional. Number of seconds to pause after the variable change
of each substeps.

∗ readback_name — Optional. Readback process variable name associated with
PV_name. The default value for readback_name is PV_name.

74

∗ readback_tolerance — Optional. Maximum acceptable absolute value of the dif-
ference between the process variable setpoint and its readback. A positive value is
required in order to enable readbacks.

∗ readback_pause — Optional. Number of seconds to pause after each reading of
the readback_name process variable. This pause time is in addition to other pauses
defined.

∗ readback_attempts— Optional. Number of allowed readings of the readback_name
process variable and readback pauses after a variable change has occured. After this
number of readings, the program exits. The first readback is attempted immediately
(i.e. no pause) after sending a setpoint command to the PV_name. A positive value
is required in order to enable readbacks.

∗ reset_to_original — Optional. A value of 1 means that the variable is reset to
its original value when the experiment terminates normally or abnormally.

75

rootname_list

∗ function: specifies rootnames from which to generate names of process variable to
measure at each step during the experiment.

&rootname_list

STRING filename = NULL;

&end

∗ filename — Required. See description of rootname file below.

suffix_list

∗ function: specifies suffixes from which to generate names of process variable to
measure at each step during the experiment.

&suffix_list

STRING filename = NULL;

&end

∗ filename — Required. See description of suffix file below.

76

execute

∗ function: start executing the experiment. Some global parameters are defined here.

&execute

double post_change_pause = 0

double intermeasurement_pause = 0

double rollover_pause = 0

long post_change_key_wait = 0

long allowed_timeout_errors = 1

long allowed_limit_errors = 1

double outlimit_pause = 0.1

long repeat_reading = 1

double post_reading_pause = 0.1

double ramp_pause = 0.25;

long ramp_steps = 10;

&end

∗ post_change_pause — Optional. Number of seconds to pause after each change
before attempting to make any measurement.

∗ intermeasurement_pause — Optional. Number of seconds to pause between each
measurement. Individual measurements for averaging are taken at this interval.

∗ rollover_pause — Optional. Number of seconds to pause after a counter has
reached its upper limit, and must rollover to zero. This allows any physical devices
associated with the counter to settle after a change equal to the total range of the
variation.

∗ post_change_key_wait — Optional. If non-zero, then wait for a key press after
making variable changes but before taking measurements. A prompt is given.

∗ allowed_timeout_errors — Optional. Number of timeout errors allowed before
aborting the program.

∗ allowed_limit_errors — Optional. Number of invalid range measurement errors
allowed before aborting the program. The valid range of a measurement is specified
in the measurement command.

∗ outlimit_pause — Optional. Number of seconds to pause after an invalid range
measurement error occured. This is to permit equipment time to recover from
whatever glitch caused the out-of-limit reading.

∗ repeat_reading — Optional. The measurements and statistical analyses are re-
peated this number of times for each variable settings. A page of data is written to
the output file for each repitition.

∗ post_reading_pause — Optional. Number of seconds to pause after taking a set
of measurements and making a statistical analysis. If measurements are repeated
then the pause is repeated after each set of measurements.

∗ ramp_steps — Optional. Number of steps in the variables PV ramp which occurs
at the start and the end of the experiment.
Ramping is necessary for some devices that do not respond well to large changes to
their setpoints. Ramping is done at the start of the experiments to slowly change
the variable PVs from their current values to their initial values. Another ramp is
done at the end to slowly bring the variable PVs from their final values back the

77

original values. Ramping back to original values is also done when the experiment
aborts for some reason.

∗ ramp_pause — Optional. Time interval at each step of the variables PV ramp which
occurs at the start and the end of the experiment. This is not the same variable as
the pause between variable changes during the experiment.

78

erase

∗ function: deletes previous variable or measurement setups.

&erase

long variable_definitions = 1

long measurement_definitions = 1

&end

∗ variable_definitions — Optional. If non-null, then all the variable definitions
are erased.

∗ measurement_definitions — Optional. If non-null, then all the measurement
definitions are erased.

list_control_quantities

∗ function: makes a cross-reference file for process variable names and column names
of the data file.

&list_control_quantities

STRING filename = NULL

&end

∗ filename— Required. Name of file. Columns defined are ControlName, SymbolicName,
and ControlUnits.

79

system_call

∗ function: specifies a system call (usually a script) to be executed repeatedly during
the experiment.

&system_call

STRING command = NULL

long index_number = 0

long index_limit = 0

double post_command_pause = 0

double pre_command_pause = 0

long append_counter = 0

STRING counter_format = "%ld"

long call_before_setting = 0

long call_before_measuring = 1

STRING counter_column_name = NULL

&end

∗ command — Required. Name of shell command or script to execute.

∗ index_number — Required. Counter number with which the command will be
associated. The command is executed when this counter is advanced or rolled over.

∗ index_number — Optional. Number of times the command is executed for the
associated counter. This field is used only when the value of index_number above
defines a new counter.

∗ post_command_pause— Optional. Number of seconds to pause after the completion
of the command.

∗ pre_command_pause — Optional. Number of seconds to pause before executing the
command.

∗ append_counter — Optional. If non-zero, the counter value is appended to the
command when the system call is made.

∗ counter_format — Optional. Format for the counter if the counter value is ap-
pended to the command.

∗ call_before_setting, call_before_measuring, — Optional. At a counter ad-
vance or rollover the command can be executed in one of three ways:

· before both variable changes and measurements:
call_before_setting=1, call_before_measuring=1

· after variable changes and before measurements:
call_before_setting=0, call_before_measuring=1

· after both variable changes and measurements:
call_before_setting=0, call_before_measuring=0

If multiple measurements are made for averaging, the command is not executed
between measurements.

∗ counter_column_name — Optional. If non-null, a column in the output file with
this name is defined. The values written to this column are the number of times the
command had been called minus one. This value doesn’t rollover with its associated
counter.

80

– Rootname file:

SDDS file defining the rootnames of the process variables with colum:

∗ Rootname — Required string column to generate measurement process variables.

– Suffix file:

SDDS file defining the suffixes and measurement parameters with columns:

∗ Suffix — Required string columne of suffix names to be appended to the Rootname
values in the rootname file to generate measurement process variables.

∗ ColumnNameSuffix — Optional string column of names of suffix column appearing
in output data file.

∗ NumberToAverage — Optional long column of number of measurements to average.

∗ IncludeStDev — Optional character column. If value is “y” then the standard
deviation (a measure of the distribution of measurements) is calcualted and included
in the output file. If “n” then the standard deviation is not calculated.

∗ IncludeSigma — Optional character column. If value is “y” then the sigma (uncer-
tainty on the mean value) is calcualted and included in the output file. If “n” then
the sigma is not calculated.

∗ LowerLimit and UpperLimit — Optional double columns. Must have both or nei-
ther. Defines a range of validity for the individual measurements. If the number of
invalid measurements (reset to 0 at each measurement step) equals or exceeds the
value of allowed_limit_errors (default of 1) in command execute, then the pro-
gram aborts. The average values written to the output file excludes measurements
outside this range.

– Output file:

The output file contains one data page for each variable step. The names of the defined
columns are those string data of the Suffix or ColumnNameSuffix columns from the
suffix file. A column is created for each standard deviation or sigma calculation requested
for a measurement. The standard deviation columns are named StDev<columnName>,
and the sigma columns are named StDev<columnName>, where <columnName> is replaced
by an actual column name.

Some additional columns are defined:

∗ Rootname — String column for the rootname of the PVs.

∗ Index — Long columns for the index of the row.

∗ Time — Double parameter of time since start of epoch. This time data can be used
by the plotting program sddsplot to make the best coice of time unit conversions
for time axis labeling.

∗ ElapsedTime — Double parameter of elapsed time of readback since the start of the
experiment.

The variable values appear as parameters in each data page.

Many time parameters are defined:

∗ Step — Long parameter for the step number.

∗ Time — Double parameter of time since start of epoch. This time data can be used
by the plotting program sddsplot to make the best coice of time unit conversions
for time axis labeling.

81

∗ ElapsedTime — Double parameter of elapsed time of readback since the start of the
experiment.

∗ TimeOfDay — Double parameter of system time in units of hours. The time does
not wrap around at 24 hours.

∗ TimeStamp — String parameter of time stamp for file.

• switches:

– -suffixFile=<filename> — SDDS file defining the suffixes and measurement parame-
ters. If not specified on the command line, then the namelist command suffix_list is
required in the input file.

– -rootnameFile=<filename> — SDDS file defining the rootnames of the process vari-
ables. If not specified on the command line, then the namelist command rootname_list

is required in the input file.

– -echoinput — echos input file to stdout.

– -dryrun — the “variable” process variables are left untouched during the execution.
The “measurement” process variables are still read. The pauses and system calls are
still in effect.

– -summarize — gives a summary of the experiment before executing it.

– -verbose[=very] — prints out information during the execution such as notification of
setting and reading process variables. The option very prints out the average measure-
ment values.

– -ezcaTiming=<timeout>,<retries> — sets EZCA timeout and retry parameters

– -describeinput — Printouts the list of namelist commands and fields of the input file.

• see also:

– sddsexperiment (2.9)

• author: M. Borland, ANL

82

2.20 sddsvmonitor

• description: sddsvmonitor reads values of process variables and writes them to a file at
a specified time interval. This command differs from sddsmonitor in that the monitored
process variables names are specified in two lists. The first list gives PV “rootnames”. The
second list gives suffixes to apply to each of the rootnames. For each readback step, a page is
written to the output file with the PV rootnames appearing in one column, and the process
variable values in separate data columns for each suffix.

Warning: If the readback values of all of the vector PVs do not change, then no data sets are
written to the output file. This skipping of duplicate values is intended to keep the size of
the output file as small as possible. The scalar PVs are not checked for changes though. In
the future an option that allows logging of duplicate vector PVs may be implemented.

• example: The pressures readbacks of storage ring vacuum gauges are monitored with the
command below.

sddsvmonitor SRvac.vmon SRvac.vsdds -time=24,hours -interval=1,minute

where the contents of the file SRvac.vmon are

SDDS1

¶meter name=ListType, type=string &end

&column

name = "ListData", type = "string", &end

&data

mode = "ascii", no_row_counts=1 &end

Rootnames

VM:01:

VM:02:

VM:03:

...

VM:40:

Suffixes

VGC1.PRES

There is only one element in the suffix list of this example. The output file will contain
columns Rootnames and VGC1.PRES.

• synopsis:

usage: sddsvmonitor {<inputfile> | -rootnames=<file> -suffixes=<file>]

[-scalars=<filename>] <outputfile>

[{-erase | -append | -generations[=digits=<integer>][,delimiter=<string>}]

[-conditions=<filename>,{allMustPass | oneMustPass}[,touchOutput][,retakeStep]]

[-steps=<integer> | -time=<value>[,<units>]] [-interval=<value>[,<units>]]

[-verbose] [-singleShot[=noprompt]] [-precision={single | double}]

[-onCAerror={useZero | skipPage | exit}] [-PVlist=<filename>]

[-noEzca [-pendIOtime=<value>]] [-ezcaTime=<timeout>,<retries>]

83

[-logDuplicates[=countThreshold=<number>]]

[-comment=<parameterName>,<text>]

Writes values of process variables to a binary SDDS file.

• files:

– input file:

The input file is an SDDS file with one data column and one parameter:

∗ ListData — Required string column for the root part or the suffix part of the
process variable names.

∗ ListType — Required string parameter for the name part type. The only values
recognized by sddsvmonitor are “rootnames” and “suffixes”.

The list of process variables is formed by combining all the rootnames and suffixes.

– rootname and suffix files:

An alternative to specifying the rootnames and suffixes with the above input file is to
specify the list of rootnames and suffixes with two separate files, as shown in the usage
message above. The string data in rootname file must be in column Rootname. The
string data in suffix file must be in column Suffix.

– scalar PV input file:

An optional input file for scalar PVs (i.e. regular PVs) can be specified. The required
columns are:

∗ ControlName — Required string column for the names of the scalar process variables
to be monitored.

∗ ReadbackName — Required string column for the names of the parameter in the
output file in which the values of the scalar process variables are written.

– conditions file:

The conditions file is an optional input specified on the command line which lists condi-
tions that must be satisfied at each time steps before the data can be logged.

The file is like the main input file, but has numerical columns LowerLimit and UpperLimit.
The minimal column set is ControlName, which contain the PV names, and the two lim-
its columns above. Depending on comand line options, when any or all PV readback
from this file is outstide the range defined by the corresponding data from LowerLimit

and UpperLimit, none of the data of the input file PVs are recorded. When this situ-
ations occurs for a long period of time, the size of the output file doesn’t grow, and it
may appear that the monitoring process has somehow stopped. It is possible to check
the program activity with the touch sub-option which causes the monitoring program
to touch the output file at every step.

– output file:

The output file contains one data column for each suffix named in the input file. By
default, the data type is float (single precision). Other columns are:

∗ Index — Long column for index of rootname.

∗ Rootname — String column for rootnames from the input file.

Each reading step produces a new page in the output file. Time and other miscellaneous
parameters are defined:

84

∗ Time — Double column for time of readback since the start of epoch. This time
data can be used by the plotting program sddsplot to make the best coice of time
unit conversions for time axis labeling.

∗ TimeOfDay — Float column for system time in units of hours. The time does not
wrap around at 24 hours.

∗ DayOfMonth — Float column for system time in units of days. The day does not
wrap around at the month boundary.

∗ Step — Long column for step number.

∗ CAerrors — Long column for number of channel access errors at each reading step.

For each scalar PV defined in the scalars command line option a parameter of type
double is defined.

Many time-related parameters which don’t change values throughout the file are defined:

∗ TimeStamp — String column for time stamp for file.

∗ PageTimeStamp — String column for time stamp for each page. When data is ap-
pended to an existing file, the new data is written to a new page. The PageTimeStamp
value for the new page is the creation date of the new page. The TimeStamp value
for the new page is the creation date of the very first page.

∗ StartTime — Double column for start time from C time call cast to type double.

∗ YearStartTime — Double column for start time of present year from C time call
cast to type double.

∗ StartYear — Short parameter for the year when the file was started.

∗ StartJulianDay — Short parameter for the day when the file was started.

∗ StartMonth — Short parameter for the month when the file was started.

∗ StartDayOfMonth— Short parameter for the day of month when the file was started.

∗ StartHour — Short parameter for the hour when the file was started.

• switches:

– -rootnames=<file> — Specifies input file for rootnames. String values must be in
column Rootnames.

– -suffixes=<file> — Specifies input file for suffixes. String values must be in column
Suffixes.

– -scalars=<filename>— Specifies input file for scalar PV names. The values are logged
as parameters.

– -conditions=<filename>,{allMustPass | oneMustPass}[,touchOutput][,retakeStep]]

— Names an SDDS file containing PVs to read and limits on each PV that must be sat-
isfied for data to be taken and logged. The file is like the main input file, but has
numerical columns LowerLimit and UpperLimit.

One of allMustPass or oneMustPass must be specified. It would make sense to use
allMustPass in most monitoring applications. If touchOutput is present, then the
output file is touched, even if no data is written. This way, one can determine by the
time stamp of the file whether the monitoring job is still alive when the conditions fail
for a long period of time. If retakeStep is present, then the value of Step in the output
file is not incremented until the conditions pass, and data is written to the output file.

– -erase — If the output file already exists, the it will be overwritten by sddsvmonitor.

85

– -append[=recover] — If the output file already exists, then append the new readings.
The output file must have previously been generated by sddsvmonitor using the same
information in the input files. The recover option allows an attempt to recover the
data using sddsconvert if the input file is somehow corrupted.

– -generations[=digits=<integer>][,delimiter=<string>] — The output is sent to
the file <SDDSoutputfile>-<N>, where <N> is the smallest positive integer such that the
file does not already exist. By default, four digits are used for formating <N>, so that
the first generation number is 0001.

– -interval=<real-value>[,<time-units>] — Specifies the interval between readings.
The time interval is implemented with a call to usleep between calls to the control
system. Because the calls to the control system make take up a significant amount of
time, the average effective time interval may sometimes be longer specified.

– -steps=<integer-value> — Number of readbacks for each process variable before nor-
mal exiting.

– -time=<real-value>[,<time-units>] — Total time for monitoring. Valid time units
are seconds, minutes, hours, and days. The program calculates the number of steps by
dividing this time by the interval. The completion time may be longer, because the time
interval in not garanteed.

– -verbose — prints out a message when data is taken.

– -singleShot[=noprompt] — a single read is prompted at the terminal and initiated by
a <cr> key press. The time interval is disabled. With noprompt present, no prompt is
written to the terminal, but a <cr> is still expected. Typing “q” or “Q” terminates the
monitoring.

– -oncaerror={usezero|skiprow|exit} — Selects action taken when a channel access
error occurs. The default is using zero (usezero) for the value of the process variable
with the channel access error, and resuming execution. The second option (skiprow) is
to simply throw away all the data for that read step, and resume execution. the third
option is to exit the program.

– -PVlist=<filename>— Specifies a file in which to write the names of all PVs monitored.

– -ezcaTiming[=<timeout>,<retries>] — Sets EZCA timeout and retry parameters.

– -logDuplicates[=countThreshold=<number>] — Specifies that data should be logged
even if it is exactly the same as the last data.

– -comment=<parameterName>,<text>— Gives the parameter name for a comment to be
placed in the SDDS output file, along with the text to be placed in the file.

• see also:

– sddsvmonitor (2.20)

– sddswmonitor (2.21)

– sddssnapshot (2.17)

• author: M. Borland and L. Emery, ANL

86

2.21 sddswmonitor

• description: sddswmonitor reads values of waveform process variables and writes them to
a file at a specified time interval. An input file defines the process variables to be monitored.

Warning: If the readback values of all of the waveform PVs do not change, then no data sets
are written to the output file. This skipping of duplicate values is intended to keep the size
of the output file as small as possible. The scalar PVs are not checked for changes though.
In the future an option that allows logging of duplicate waveform PVs may be implemented.

• example: The history of a beam position monitor readback is collected with this command:

sddswmonitor SlowBh.wmon SlowBh.sdds -step=1

where the contents of the file SlowBh.wmon are

SDDS1

&description &end

&description

contents = "sddssequence output", &end

¶meter

name = WaveformLength, type=long, &end

&column

name = WaveformPV, type = string, &end

&column

name = WaveformName, type = string, &end

&data

mode = ascii, &end

! page number 1

512 ! WaveformLength

2 ! number of rows

S1A:P1:bh:x_wf S1A:P1:x

S1A:P1:bh:y_wf S1A:P1:y

• synopsis:

usage: sddswmonitor {<inputfile> | -PVnames=<name>[,<name>]} <outputfile>

[{-erase | -generations[=digits=<integer>][,delimiter=<string>]}]

[-steps=<integer> | -time=<value>[,<units>]] [-interval=<value>[,<units>]]

[-verbose] [-singleShot[=noprompt]] [-precision={single | double}]

[-onCAerror={useZero | skipPage | exit}]

[-scalars=<filename>]

[-conditions=<filename>,{allMustPass | oneMustPass}[,touchOutput][,retakeStep]]

[-ezcaTime=<timeout>,<retries>]

[-comment=<parameterName>,<text>]

Writes values of waveform process variables to a binary SDDS file.

• files:

– input file:

The input file is an SDDS file with two required columns and one required parameter:

87

∗ WaveformLength — Required long parameter for the length of the waveform PV’s.
All WaveformPVs are expected to have this length.

∗ WaveformPV — Required string column for the names of the waveform process vari-
ables.

∗ WaveformName — Required string column for the names of the data columns in the
output file.

– scalar PV input file:

An optional input file for scalar PVs (i.e. regular PVs) can be specified. The required
columns are:

∗ ControlName — Required string column for the names of the scalar process variables
to be monitored.

∗ ReadbackName — Required string column for the names of the parameter in the
output file in which the values of the scalar process variables are written.

– conditions file:

The conditions file is an optional input file specified on the command line which lists
conditions that must be satisfied at each time step before the data can be logged.

The file is like the main input file, but has numerical columns LowerLimit and UpperLimit.
The minimal column set is ControlName, which contain the PV names, and the two lim-
its columns above. Depending on comand line options, when any or all PV readback
from this file is outstide the range defined by the corresponding data from LowerLimit

and UpperLimit, none of the data of the input file PVs are recorded. When this situ-
ations occurs for a long period of time, the size of the output file doesn’t grow, and it
may appear that the monitoring process has somehow stopped. It is possible to check
the program activity with the touch sub-option which causes the monitoring program
to touch the output file at every step.

– output file:

The output file contains one data column for each waveform process variable named in
the input file. The names of the data columns are given by the values of WaveformName in
the input file. The units are obtained internally from the EPICS database. An additional
long column Index is created that give the index of each point in the waveform.

The values of the scalar PVs are written to parameters with names given by the ReadbackName
column of the optional scalars input file. The units are obtained internally from the
EPICS database.

By default, the data type is float (single precision). Each reading step produces a new
page in the output file.

Time and other miscellaneous parameters are defined:

∗ Time — Double column for elapsed time of readback since the start of epoch.

∗ TimeOfDay — Float column for system time in units of hours. The time does not
wrap around at 24 hours.

∗ DayOfMonth — Float column for system time in units of days. The day does not
wrap around at the month boundary.

∗ Step — Long column for step number.

∗ CAerrors — Long column for number of channel access errors at each reading step.

For each scalar PV defined in the scalars command line option a parameter of type
double is defined.

88

Many additional parameters which don’t change values throughout the file are defined:

∗ TimeStamp — String column for time stamp for file.

∗ PageTimeStamp — String column for time stamp for each page.

∗ StartTime — Double column for start time from C time call cast to type double.

∗ YearStartTime — Double column for start time of present year from C time call
cast to type double.

∗ StartYear — Short parameter for the year when the file was started.

∗ StartJulianDay — Short parameter for the day when the file was started.

∗ StartMonth — Short parameter for the month when the file was started.

∗ StartDayOfMonth— Short parameter for the day of month when the file was started.

∗ StartHour — Short parameter for the hour when the file was started.

• switches:

– -PVnames=<name>[,<name>] — specifies a list of PV names to read. It the waveforms
are of different lengths, the short ones are padded with zeros.

– -scalars=<filename>— Specifies input file for scalar PV names. The values are logged
as parameters.

– -erase — If the output file already exists, then it will be overwritten by sddswmonitor.

– -generations[=digits=<integer>][,delimiter=<string>] — The output is sent to
the file <SDDSoutputfile>-<N>, where <N> is the smallest positive integer such that the
file does not already exist. By default, four digits are used for formating <N>, so that
the first generation number is 0001.

– -interval=<real-value>[,<time-units>] — Specifies the interval between readings.
The time interval is implemented with a call to usleep between calls to the control system.
because the calls to the control system may take up a significant amount of time, the
average effective time interval may be longer than specified.

– -steps=<integer-value> — Number of readbacks for each process variable before nor-
mal exiting.

– -time=<real-value>[,<time-units>] — Total time for monitoring. Valid time units
are seconds, minutes, hours, and days. The program calculates the number of steps by
dividing this time by the interval. The completion time may be longer, because the time
interval in not garanteed.

– -verbose — prints out a message when data is taken.

– -singleShot[=noprompt] — a single read is prompted at the terminal and initiated by
a <cr> key press. The time interval is disabled. With noprompt present, no prompt is
written to the terminal, but a <cr> is still expected. Typing “q” or “Q” terminates the
monitoring.

– -oncaerror=usezero|skiprow|exit— Selects action taken when a channel access error
ocurrs. The default is using zero (usezero) for the value of the process variable with the
channel access error, and resuming execution. The second option (skiprow) is to simply
throw away all the data for that read step, and resume execution. the third option is to
exit the program.

– -ezcaTiming[=<timeout>,<retries>] — Sets EZCA timeout and retry parameters.

89

– -scalars=<filename> — Specifies sddsmonitor input file to get names of scalar PVs
from. These will be logged in the output file as parameters.

– -conditions=<filename>,{allMustPass | oneMustPass}[,touchOutput][,retakeStep]]

— Names an SDDS file containing PVs to read and limits on each PV that must be sat-
isfied for data to be taken and logged. The file is like the main input file, but has
numerical columns LowerLimit and UpperLimit.

One of allMustPass or oneMustPass must be specified. It would make sense to use
allMustPass in most monitoring applications. If touchOutput is present, then the
output file is touched, even if no data is written. This way, one can determine by the
time stamp of the file whether the monitoring job is still alive when the conditions fail
for a long period of time. If retakeStep is present, then the value of Step in the output
file is not incremented until the conditions pass, and data is written to the output file.

– -comment=<parameterName>,<text>— Gives the parameter name for a comment to be
placed in the SDDS output file, along with the text to be placed in the file.

• see also:

– sddsmonitor (2.14)

– sddsvmonitor (2.20)

– sddssnapshot (2.17)

• author: M. Borland and L. Emery, ANL

90

2.22 squishPVs

• description: squishPVs minimizes the values of a set of readback process variables (for
example bpm readbacks) by varying one setpoint process variable (for example a corrector
magnet setpoint) which has a physical influence on the readback process variables. An input
file defines one or more data sets of correction groups, each consisting of a list of readback
PVs and one actuator PV. The method simulates the manual tweaking of physical devices
that is often necessary when the readbacks are very noisy or when obtaining a reponse matrix
is not worth the trouble.

The name squishPVs comes from the apparent squishing of the real-time trajectory display
when squishPVs is running.

• example: The first-turn horizontal trajectory of the APS ring is minimized with this com-
mand:

squishPVs xTrajCorr.sdds

where correction groups are defined in the file xTrajCorr.sdds. Part of the first correction
group in the file xTrajCorr.sdds is shown below:

SDDS1

&description

text = "Input file for first turn correction", &end

¶meter

name = "CorrectorPV", type = "string", &end

¶meter

name = "Gain", type = "double", &end

! LowerLimit and UpperLimit parameters are optional

¶meter

name = "LowerLimit", type = "double", &end

¶meter

name = "UpperLimit", type = "double", &end

&column

name = "BpmPV", type = "string", &end

! Offset PVs are optional

&column

name = "OffsetPV", type = "string", &end

! Fixed offsets are optional and default to 0

&column

name = "OffsetValue", type = "double" &end

! Weights are optional and default to 1

&column

name = "Weight", type = "double", &end

&data

mode = "ascii", &end

! table number 1

! CorrectorPV:

S1A:H1:CurrentAO

1.000000000000000e+00 ! Gain

91

-150 ! LowerLimit

150 ! UpperLimit

360 ! number of rows

S1A:P1:ms:x S1A:P1:ms:x:SetpointAO 0.1 1

S1A:P2:ms:x S1A:P2:ms:x:SetpointAO 0.2 2

S1A:P3:ms:x S1A:P3:ms:x:SetpointAO 0.3 1

S1A:P4:ms:x S1A:P4:ms:x:SetpointAO 0.4 1

S1B:P5:ms:x S1B:P5:ms:x:SetpointAO 0.5 2

S1B:P4:ms:x S1B:P4:ms:x:SetpointAO 0.4 1

...

• synopsis:

usage: squishPVs <inputfile>

[-count=<pvName>,<lower>,<upper>,<number>]

[-averages=<number>,<pauseInSeconds>] [-stepSize=<value>]

[-subdivisions=<number>,<factor>]

[-upstep=count=<number>,factor=<value>]

[-repeat={number=<integer> | forever}[,pause=<seconds>]

[-ezcaTiming=<timeout>,<retries>]

[-settlingTime=<seconds>] [-verbose]

[-criterion={mav | rms}] [-maximize]

[-threshold=<value>] [-actionLevel=<value>]

[-testValues=<file>,[limit=<number>]]

• files:

– input file:

The input file data pages define correction groups. A correction group consists of a list
of readback PVs and one corrector PV. The required column and parameters are:

∗ BpmPV — String column of readback PVs. The name BpmPV is due to the original
application of squishPV where the first turn trajectory is reduced by tweaked by
corrector magnets.

∗ OffsetPV — Optional string column of PVs to subtract from corresponding BpmPV.
This will have the effect of optimizing toward the values of the offsets for positive
weights (the default). The default offsets are all 0.

∗ Weight — Optional double-precision column of values by which to multiply the
readback-offset values. The default weight is 1.

∗ CorrectorPV — String parameter of the corrector PV used in the correction group.

∗ Gain — Double parameter for factor by which to multiply the value of the command
line option stepsize.

• switches:

– -count=<pvName>,<lower>,<upper>,<number>— Optional. Specifies a condition after
which a reading will be taken. The process variable <pvName> is read at 1 second
intervals. If this PV is within the validity limits specified for this number of readbacks,
then the PVs of the correction group are read.

92

– -averages=<number>,<pauseInSeconds — Optional. Number of PV readings to aver-
age and the number of seconds to wait between readings.

– -stepsize=<value> — Optional. Initial step size to attempt for corrector PVs.

– -subdivisions=<number>,<factor>— Optionally specifies number and size of interval
subdivisions.

– -upstep=count=<number>,factor=<value>— Optionally specifies the number of steps
to take in one direction before increasing the stepsize by the given factor.

– -repeat=number=<integer> | forever[,pause=<seconds>]— Specifies repeated op-
timization, either a given number of times or indefinitely, with a pause in between. This
is useful if a system needs periodic tuning up.

– -settlingTime=<seconds> — Optionally specifies the settling time after corrector PV
changes.

– -criterion=mav|rms — Optionally specifies mean-absolute-value or RMS reduction.
Mean-absolute-value is the default.

– -threshold=<value> — Specifies that the change in the criterion must be below the
specified value in order to be considered a genuine improvment.

– -actionLevel=<value> — Specifies that the criterion must be above the given value in
order for optimization to start.

– -maximize — Specifies that the criterion should be maximized. The default is mini-
mization.

– -ezcaTiming=<timeout>,<retries> — Optionally specifies EZCA timing parameters.

– -verbose — Optionally requests output during run.

– -testValues=<file>,[limit=<number>] – file is a sdds format file containing minimum
and maximum values of PV’s specifying a range outside of which the feedback is tem-
porarily suspended. Column names are ControlName, MinimumValue, MaximumValue.
Optional column names are SleepTime, ResetTime. limits is the maixum number of
failure times. The program will be terminated when the continuous failure times reaches
the limit.

• see also:

– sddscontrollaw (2.8)

• author: M. Borland, ANL

References

[1] M. Borland, “Application Programmer’s Guide for SDDS Version 1.4”, APS LS Note.

[2] L. Emery, “Commissioning Software Tools at the Advanced Photon Source”, to appear in
Proceedings of the 1995 Particle Accelerator Conference, May 1995, Dallas.

93

Contents

1 Manual Pages Overview 1
1.1 EPICS Toolkit Programs by Category . 1

1.1.1 Configuration Save and Restore . 1
1.1.2 Data Collecting . 2
1.1.3 Control . 3

1.2 Toolkit Program Usage Conventions . 3

2 Manual Pages 4
2.1 burtrb . 5
2.2 burtwb . 8
2.3 knobconfig . 11
2.4 toggle . 14
2.5 sddsalarmlog . 16
2.6 sddscaramp . 19
2.7 sddscasr . 21
2.8 sddscontrollaw . 23
2.9 sddsexperiment . 27
2.10 sddsfeedforward . 39
2.11 sddsglitchlogger . 42
2.12 sddslogger . 47
2.13 sddslogonchange . 51
2.14 sddsmonitor . 55
2.15 sddsoptimize . 59
2.16 sddspvtest . 63
2.17 sddssnapshot . 65
2.18 sddsstatmon . 67
2.19 sddsvexperiment . 70
2.20 sddsvmonitor . 83
2.21 sddswmonitor . 87
2.22 squishPVs . 91

94

